扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
本篇内容介绍了“Python数据标准化实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
成都创新互联公司专注于二道江企业网站建设,响应式网站设计,成都做商城网站。二道江网站建设公司,为二道江等地区提供建站服务。全流程定制设计,专业设计,全程项目跟踪,成都创新互联公司专业和态度为您提供的服务
说明
1、将原始数据转换为均值为0,标准差在1范围内。
2、对标准化而言:如果出现异常点,由于有一定数据量,少量异常点对平均值的影响不大,因此方差变化不大。
实例
def stand_demo(): """ 标准化 :return: """ # 1. 获取数据 data = pd.read_csv('dating.txt') data = data.iloc[:, :3] print('data:\n', data) # 2.实例化一个转换器类 transfer = StandardScaler() # 3.调用fit_transform() data_new = transfer.fit_transform(data) print('data_new:\n', data_new) return None
“Python数据标准化实例分析”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流