扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要介绍Python求解最长公共子序列的方法,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
创新互联建站主营珠海网站建设的网络公司,主营网站建设方案,重庆APP软件开发,珠海h5小程序定制开发搭建,珠海网站营销推广欢迎珠海等地区企业咨询
Python-求解两个字符串的最长公共子序列
一、问题描述
给定两个字符串,求解这两个字符串的最长公共子序列(Longest Common Sequence)。比如字符串1:BDCABA;字符串2:ABCBDAB。则这两个字符串的最长公共子序列长度为4,最长公共子序列是:BCBA。
二、算法求解
这是一个动态规划的题目。对于可用动态规划求解的问题,一般有两个特征:①最优子结构;②重叠子问题
①最优子结构
设X=(x1,x2,...,xn)和Y=(y1,y2,...,ym)是两个序列,将X和Y的最长公共子序列记为LCS(X,Y)
找出LCS(X,Y)就是一个最优化问题。因为,我们需要找到X和Y中最长的那个公共子序列。而要找X和Y的LCS,首先考虑X的最后一个元素和Y的最后一个元素。
(1)如果xn=ym,即X的最后一个元素与Y的最后一个元素相同,这说明该元素一定位于公共子序列中。因此,现在只需要找:LCS(Xn-1,Ym-1)
LCS(Xn-1,Ym-1)就是原问题的一个子问题。为什么叫子问题?因为它的规模比原问题小。
为什么是最优的子问题?因为我们要找的是Xn-1和Ym-1的最长公共子序列啊。最长的!换句话说就是最优的那个。
(2)如果xn!=ym,这下要麻烦一点,因为它产生了两个子问题:LCS(Xn-1,Ym)和LCS(Xn,Ym-1)
因为序列X和序列Y的最后一个元素不相等,那说明最后一个元素不可能是最长公共子序列中的元素。
LCS(Xn-1,Ym)表示:最长公共序列可以在(x1,x2,...xn-1)和(y1,y2,...,ym)中找。
LCS(Xn,Ym-1)表示:最长公共序列可以在(x1,x2,...xn)和(y1,y2,...,ym-1)中找。
求解上面两个子问题,得到的公共子序列谁最长,那谁就是LCS(X,Y)。用数学表示就是:
LCS=max{LCS(Xn-1,Ym),LCS(Xn,Ym-1)}
由于条件⑴和⑵考虑到了所有可能的情况。因此,我们成功的把原问题转化成了三个规模更小的问题。
②重叠子问题
重叠子问题是什么?就是说原问题转化成子问题后,子问题中有相同的问题。
原问题是:LCS(X,Y)。子问题有❶LCS(Xn-1,Ym-1)❷ LCS(Xn-1,Ym)❸ LCS(Xn,Ym-1)
乍一看,这三个问题是不重叠的。可本质上它们是重叠的,因为它们只重叠了一大部分。举例:
第二个子问题:LCS(Xn-1,Ym)就包含了问题❶LCS(Xn-1,Ym-1),为什么?
因为,当Xn-1和Ym的最后一个元素不相同时,我们又需要将LCS(Xn-1,Ym-1)进行分解:分解成:LCS(Xn-1,Ym-1)和LCS(Xn-2,Ym)
也就是说:在子问题的继续分解中,有些问题是重叠的。
由于像LCS这样的问题,它具有重叠子问题的性质,因此:用递归来求解就太不划算了。国为采用递归,它重复地求解了子问题,而且需要注意的是,所有子问题加起来的个数是指数级的。
那么问题来了,如果用递归求解,有指数级个子问题,故时间复杂度是指数级的。这指数级个子问题,难道用了动态规划,就变成多项式时间了??
关键是采用动态规划时,并不需要去一一计算那些重叠了的子问题。或者说:用了动态规划之后,有些子问题是通过“查表”直接得到的,而不是重新又计算一遍得到的。举个例子:比如求Fib数列。
求fib(5),分解成了两个子问题:fib(4)和fib(3),求解fib(4)和fib(3)时,又分解了一系列的小问题...
从图中可以看出:根的左右子树:fib(4)和fib(3)下,是有很多重叠的!比如,对于fib(2),它就一共出现了三次。如果用递归来求解,fib(2)就会被计算三次,而用DP(Dynamic Programming)动态规划,则fib(2)只会计算一次,其他两次则是通过“查表”直接求得。而且,更关键的是:查找求得该问题的解之后,就不需要再继续去分解该问题了。而对于递归,是不断地将问题解,直到分解为基准问题(fib(0)或者fib(1))
说了这么多,还是写下最长公共子序列的递归式才完整。
C[i,j]表示:(x1,x2,...,xi)和(y1,y2,...,yj)的最长公共子序列的长度。公式的具体解释可参考《算法导论》动态规划章节
三、LCS Python代码实现
#! /usr/bin/env python3 # -*- coding:utf-8 -*- # Note : 用于实现求解两个字符串的最长公共子序列 def longestCommonSequence(str_one, str_two, case_sensitive=True): """ str_one 和 str_two 的最长公共子序列 :param str_one: 字符串1 :param str_two: 字符串2(正确结果) :param case_sensitive: 比较时是否区分大小写,默认区分大小写 :return: 最长公共子序列的长度 """ len_str1 = len(str_one) len_str2 = len(str_two) # 定义一个列表来保存最长公共子序列的长度,并初始化 record = [[0 for i in range(len_str2 + 1)] for j in range(len_str1 + 1)] for i in range(len_str1): for j in range(len_str2): if str_one[i] == str_two[j]: record[i + 1][j + 1] = record[i][j] + 1 elif record[i + 1][j] > record[i][j + 1]: record[i + 1][j + 1] = record[i + 1][j] else: record[i + 1][j + 1] = record[i][j + 1] return record[-1][-1] if __name__ == '__main__': # 字符串1 s1 = "BDCABA" # 字符串2 s2 = "ABCBDAB" # 计算最长公共子序列的长度 res = longestCommonSequence(s1, s2) # 打印结果 print(res) # 4
以上是Python求解最长公共子序列的方法的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
Copyright © 2002-2023 www.csdahua.cn 快上网建站品牌 QQ:244261566 版权所有 备案号:蜀ICP备19037934号
微信二维码
移动版官网