Python数据抓取、分析、挖掘和分布式计算内容有哪些

本篇内容主要讲解“Python数据抓取、分析、挖掘和分布式计算内容有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python数据抓取、分析、挖掘和分布式计算内容有哪些”吧!

创新互联公司是工信部颁发资质IDC服务器商,为用户提供优质的成都服务器托管服务

01 数据抓取

1、背景调研

1)检查robots.txt,了解爬取该网站有哪些限制;

2)pip install builtwith;pip install python-whois

Python数据抓取、分析、挖掘和分布式计算内容有哪些

2、数据抓取:

1)动态加载的内容:

使用selenium

#!/usr/bin/env python # -*- coding: utf-8 -*- from selenium import webdriver from selenium.webdriver.common.keys import Keys import time import sys reload(sys) sys.setdefaultencoding('utf8') driver = webdriver.Chrome("/Users/didi/Downloads/chromedriver") driver.get('http://xxx') elem_account = driver.find_element_by_name("UserName") elem_password = driver.find_element_by_name("Password") elem_code = driver.find_element_by_name("VerificationCode") elem_account.clear() elem_password.clear() elem_code.clear() elem_account.send_keys("username") elem_password.send_keys("pass") elem_code.send_keys("abcd") time.sleep(10) driver.find_element_by_id("btnSubmit").submit() time.sleep(5) driver.find_element_by_class_name("txtKeyword").send_keys(u"x") #模拟搜索 driver.find_element_by_class_name("btnSerch").click() # ...省略处理过程 dw = driver.find_elements_by_xpath('//li[@class="min"]/dl/dt/a') for item in dw: url = item.get_attribute('href')    if url:  ulist.append(url)  print(url + "---" + str(pnum))  print("##################")

2)静态加载的内容

(1)正则;

(2)lxml;

(3)bs4

#!/usr/bin/env python # -*- coding: utf-8 -*- string = r'src="(http://imgsrc\.baidu\.com.+?\.jpg)" pic_ext="jpeg"' # 正则表达式字符串 urls = re.findall(string, html) import requests from lxml import etree import urllib response = requests.get(url) html = etree.HTML(requests.get(url).content) res = html.xpath('//div[@class="d_post_content j_d_post_content "]/img[@class="BDE_Image"]/@src') # lxml import requests from bs4 import BeautifulSoup soup = BeautifulSoup(response.text, 'lxml') # 解析response并创建BeautifulSoup对象 urls = soup.find_all('img', 'BDE_Image')

Python数据抓取、分析、挖掘和分布式计算内容有哪些

3):反爬与反反爬

(1):请求频率;

(2):请求头;

(3):IP代理;

4):爬虫框架:

(1):Scrapy

(2):Portia

02 数据分析

1、常用的数据分析库:

NumPy:是基于向量化的运算。

1)List => 矩阵

2)ndim:维度;shape:行数和列数;size:元素个数

Scipy:是NumPy的扩展,有高等数学、信号处理、统计等。

Python数据抓取、分析、挖掘和分布式计算内容有哪些

Pandas:是基于NumPy的快速构建高级数据结构的包,数据结构:Series和DataFrame。

1):NumPy类似于List,Pandas 类似于Dict。

Matplotlib:绘图库。

1):是一个强大的绘图工具;

2):支持散点图、线图、柱状图等;

简单例子:

pip2 install Numpy >>> import numpy as np >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> a ** 2 array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81]) pip2 install Scipy >>> import numpy as np >>> from scipy import linalg >>> a = np.array([[1, 2], [3, 4]]) >>> linalg.det(a) -2.0 pip2 install pandas >>> df = pd.DataFrame({ 'A' : pd.date_range("20170802", periods=5), 'B' : pd.Series([11, 22, 33, 44, 55]), 'C' : pd.Categorical(["t","a","b","c","g"])}) >>> df ABC 0 2017-08-02 11 t 1 2017-08-03 22 a 2 2017-08-04 33 b 3 2017-08-05 44 c 4 2017-08-06 55 g pip2 install Matplotlib >>> import matplotlib.pyplot as plt >>> plt.plot([1, 2, 3]) [] >>> plt.ylabel("didi")  >>> plt.show()

2、高级数据分析库:

scikit-learn:机器学习框架。

Python数据抓取、分析、挖掘和分布式计算内容有哪些

图上可以表示出数据小于50,No:需要更多的数据, Yes使用分类器,一直走下去;

Python数据抓取、分析、挖掘和分布式计算内容有哪些

由图中,可以看到算法有四类,分类,回归,聚类,降维。

KNN:

#!/usr/local/bin/python # -*- coding: utf-8 -*- ''' 预测Iris https://en.wikipedia.org/wiki/Iris_flower_data_set ''' # 导入模块 from __future__ import print_function from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 创建数据 iris = datasets.load_iris() iris_X = iris.data # 花萼的长宽、 花瓣的长宽 iris_y = iris.target # 花的种类 0, 1, 2 print(iris_X) print(iris_y) print(iris.target_names) # 定义模型-训练模型-预测 X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size = 0.1) # 训练数据10% knn = KNeighborsClassifier() # 创建KNN近邻器 knn.fit(X_train, y_train) # 训练数据 predicts = knn.predict(X_test) # 得到预测结果 # 对比结果 print("#########################") print(X_test) print(predicts) print(y_test) # 计算预测准确率 print(knn.score(X_test, y_test)) [[ 5.   3.3  1.4  0.2] [ 5.   3.5  1.3  0.3] [ 6.7  3.1  5.6  2.4] [ 5.8  2.7  3.9  1.2] [ 6.   2.2  5.   1.5] [ 6.   3.   4.8  1.8] [ 6.3  2.5  5.   1.9] [ 5.   3.6  1.4  0.2] [ 5.6  2.9  3.6  1.3] [ 6.9  3.2  5.7  2.3] [ 4.9  3.   1.4  0.2] [ 5.9  3.   4.2  1.5] [ 4.8  3.   1.4  0.1] [ 5.1  3.4  1.5  0.2] [ 4.7  3.2  1.6  0.2]] [0 0 2 1 1 2 2 0 1 2 0 1 0 0 0] [0 0 2 1 2 2 2 0 1 2 0 1 0 0 0] 0.933333333333

Linear Regression

#!/usr/local/bin/python # -*- coding: utf-8 -*- ''' 波士顿房价趋势 ''' # 导入模块 from __future__ import print_function from sklearn import datasets from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # 创建数据 loaded_data = datasets.load_boston() #波士顿的房价 data_X = loaded_data.data data_y = loaded_data.target print(data_X) print(data_y) # 定义模型-训练模型-预测 model = LinearRegression() # 线性回归 model.fit(data_X, data_y) # 训练数据 print(model.predict(data_X[:4, :])) # 得到预测结果 print(data_y[:4]) # 结果 print("#########################") X, y = datasets.make_regression(n_samples=100, n_features=1, noise=10) # 生成回归模型数据100个样本, 每个样本一个特征, 高斯噪声 plt.scatter(X, y) # 散点图 plt.show()

Python数据抓取、分析、挖掘和分布式计算内容有哪些

03 数据挖掘

1、挖掘关键词:

涉及到的算法:TF-IDF

news.txt:

滴滴出行与欧非地区领先出行企业Taxify达成战略合作 支持跨地区交通技术创新

2017-08-01 滴滴出行 【2017年8月1日,中国,北京/爱沙尼亚,塔林】滴滴出行今日宣布与欧非地区移动出行领军企业Taxify达成战略合作 。滴滴将通过投资以及智能交通技术研发等方面协作,支持Taxify在多元市场进行更深度的市场拓展和技术创新。 滴滴出行是全球领先的移动出行平台。依靠人工智能技术, 滴滴在超过400个城市为4亿多用户提供包括出租车、专车、快车、豪华车和顺风车等在内的多元化出行服务。在为1700 余万司机提供灵活就业与收入机会的同时,滴滴也以人工智能技术支持城市管理者建设一体化、可持续的智慧交通解决 方案。 Taxify于2013年成立于爱沙尼亚,是欧洲和非洲地区成长最快的移动出行企业。目前其出租车和私家车共享出行服务网 络遍及欧洲、非洲、西亚的中心城市;触达匈牙利、罗马尼亚、波兰、波罗的海三国、南非、尼日利亚、肯尼亚等18个 国家,拥有超过250万用户。 滴滴出行创始人、CEO程维表示:“Taxify在多元化的市场提供优质的创新型出行服务。我们都致力于运用移动互联网 科技的力量,满足迅速演变的消费者需求;帮助传统交通行业转型升级。我相信这一合作将为亚洲,欧洲和非洲市场间 构建跨地区智慧交通纽带作出贡献。”

Taxify创始人、CEO马克斯·维利格(Marcus Villig)表示:“Taxify将借力此次战略合作,巩固我们在欧洲和非洲核心市场的优势地位。我们相信滴滴是最理想的 伙伴,能帮助我们成为欧非地区***和最有效率的出行选择。”

#!/usr/local/bin/python # -*- coding: utf-8 -*- ''' 分析文章关键词 ''' import os import codecs import pandas import jieba import jieba.analyse # 格式化数据格式 tagDF = pandas.DataFrame(columns=['filePath', 'content', 'tag1', 'tag2', 'tag3', 'tag4', 'tag5']) try: with open('./houhuiyang/news.txt', 'r') as f: #载入语料库 content = f.read().strip()    tags = jieba.analyse.extract_tags(content, topK=5) #TF_IDF    tagDF.loc[len(tagDF)] = ["./news.txt", content, tags[0], tags[1], tags[2], tags[3], tags[4]]    print(tagDF) except Exception, ex:    print(ex)

Python数据抓取、分析、挖掘和分布式计算内容有哪些

计算出文章Top5的关键词:出行、滴滴、Taxify、欧非、交通

2、情感分析

1)最简单的方式就是基于情感词典的方法;

2)复杂的就是基于机器学习的方法;

pip2 install nltk  >>> import nltk  >>> from nltk.corpus import stopwords #停止词 >>> nltk.download() # 安装语料库  >>> t = "Didi is a travel company"  >>> word_list = nltk.word_tokenize(t)  >>> filtered_words = [word for word in word_list if word not in stopwords.words('english')] ['Didi', 'travel', 'company']  >>> nltk.download('stopwords') #下载停止词

中英文NLP分词区别

1):启发式 Heuristic

2):机器学习/统计法:HMM、CRF

处理流程:raw_text -> tokenize[pos tag] -> lemma / stemming[pos tag] -> stopwords -> word_list

04 Python 分布式计算 

pip2 install mrjjob  pip2 install pyspark

1)Python 多线程;

2)Python 多进程【multiprocessing】;

3)全局解释器锁GIL;

4)进程间通信Queue;

5)进程池Pool;

6)Python的高阶函数;

map/reduce/filter

7)基于Linux的管道的MapReducer 【cat word.log | python mapper.py | python reducer.py | sort -k 2r】

word.log

北京 成都 上海 北京 山西 天津 广州

#!/usr/local/bin/python  # -*- coding: utf-8 -*-  '''  mapper  '''  import sys  try:     for lines in sys.stdin:         line = lines.split()         for word in line:             if len(word.strip()) == 0:                 continue             count = "%s,%d" % (word, 1)             print(count)  except IOError, ex:  print(ex)  #!/usr/local/bin/python  # -*- coding: utf-8 -*-  '''  reducer  '''  import sys  try:     word_dict = {}     for lines in sys.stdin:         line = lines.split(",")         if len(line) != 2:             continue         word_dict.setdefault(line[0], 0)         word_dict[line[0]] += int(line[1])     for key, val in word_dict.items():      stat = "%s %d" % (key, val)         print(stat)  except IOError, ex:  print(ex)

Python数据抓取、分析、挖掘和分布式计算内容有哪些

05 神经网络

分别有CPU/GPU版本

1)tensorflow 建立的神经网络是静态的

2)pytorch http://pytorch.org/#pip-install-pytorch 建立的神经网络是动态的 【Troch 是Lua写的,这个是Python版本】

简单说数据:

Python数据抓取、分析、挖掘和分布式计算内容有哪些

标量(Scalar)是只有大小,没有方向的量,如1,2,3等

向量(Vector)是有大小和方向的量,其实就是一串数字,如(1,2)

矩阵(Matrix)是好几个向量拍成一排合并而成的一堆数字,如[1,2;3,4]

张量(Tensor)是按照任意维排列的一堆数字的推广。如图所示,矩阵不过是三维张量下的一个二维切面。要找到三维张量下的一个 标量,需要三个维度的坐标来定位。

TensorFlow pytorch用张量这种数据结构来表示所有的数据。

#-*- coding: UTF-8 -*- #author houhuiyang import torch import numpy as np from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt np_data = np.arange(6).reshape((2, 3)) torch_data = torch.from_numpy(np_data) tensor2np = torch_data.numpy() print( "\nnp_data", np_data, #矩阵 "\ntorch_data", torch_data, #张量   "\ntensor to numpy", tensor2np ) # data = [-1, -2, 1, 2, 3] data = [[1, 2], [3, 4]] tensor = torch.FloatTensor(data) # abs sin cos mean平均值 matmul/mm print(   "\nnumpy", np.matmul(data, data),   "\ntorch", torch.mm(tensor, tensor) ) # tensor variable tensor_v = torch.FloatTensor([[1,2], [3,4]]) variable = Variable(tensor_v, requires_grad=True) # 计算中值 t_out = torch.mean(tensor_v * tensor_v) # x ^ 2 v_out = torch.mean(variable * variable) # 反向传播 print(   tensor_v,   variable,   t_out,   v_out ) v_out.backward() # 反向传递 print(variable.grad) # 梯度 ''' y = Wx 线性 y =AF(Wx)非线性 【激励函数 relu/sigmoid/tanh】 ''' x =torch.linspace(-5,5,200) # 从-5到5取200个点 x = Variable(x) x_np = x.data.numpy() y_relu = F.relu(x).data.numpy() y_sigmoid = F.sigmoid(x).data.numpy() y_tanh = F.tanh(x).data.numpy() # y_softplus = F.softplus(x).data.numpy() # 概率图 plt.figure(1, figsize=(8, 6)) # plt.subplot(221) # 绘制子图 plt.plot(x_np, y_relu, c = "red", label = "relu") plt.ylim(-1, 5) plt.legend(loc = "best") plt.show() # plt.subplot(222) plt.plot(x_np, y_sigmoid, c = "red", label = "igmoid") plt.ylim(-0.2, 1.2) plt.legend(loc = "best") plt.show() # plt.subplot(223) plt.plot(x_np, y_tanh, c = "red", label = "subplot") plt.ylim(-1.2, 1.2) plt.legend(loc = "best") plt.show()

搭建简单的神经网络

#-*- coding: UTF-8 -*- #author 守望之心 ''' 回归 分类 ''' import torch from torch.autograd import Variable import torch.nn.functional as F # 激励函数 import matplotlib.pyplot as plt x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim = 1) # unsqueeze 一维转变为二维 y = x.pow(2) + 0.2 * torch.rand(x.size()) x, y = Variable(x), Variable(y) # print(x) # print(y) # plt.scatter(x.data.numpy(), y.data.numpy()) # plt.show() class Net(torch.nn.Module): # 继承 torch 的Moudle def __init__(self, n_features, n_hidden, n_output): super(Net, self).__init__() # 继承torch __init__ self.hidden = torch.nn.Linear(n_features, n_hidden) # 隐藏层线性输出 self.predict = torch.nn.Linear(n_hidden, n_output) # 输出线性层 def forward(self, x): x = F.relu(self.hidden(x)) # 激励函数 x = self.predict(x) # 输出值 return x net = Net(1, 10, 1) # 输入值, 隐藏层10,10个神经元, 1个输出值 print(net) # 输出搭建的神经网络结构 plt.ion() plt.show() # 训练工具 optimizer = torch.optim.SGD(net.parameters(), lr = 0.5) # 传入net的所有值, lr是学习率 loss_func = torch.nn.MSELoss() # 均方差 print(net.parameters()) for t in range(100): prediction = net(x) #喂给net 训练数据x, 输出预测值 loss = loss_func(prediction, y) # 计算两者误差 # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() if t % 5 == 0:  plt.cla()  plt.scatter(x.data.numpy(), y.data.numpy())  plt.plot(x.data.numpy(), prediction.data.numpy(), "r-", lw = 5)  plt.text(0.5, 0, 'Loss=%.4f' % loss.data[0], fontdict={'size': 20, 'color':  'red'})  plt.pause(0.1) plt.ioff() plt.show()

Python数据抓取、分析、挖掘和分布式计算内容有哪些

Python数据抓取、分析、挖掘和分布式计算内容有哪些

06 数学 微积分

1、极限:

无穷大无穷小阶数;

2、微分学:

导数:

1)导数就是曲线的斜率,是曲线变化快慢的反应;

2)二阶导数是斜率变化快慢的反应,表现曲线的凸凹性;

泰勒级数逼近

牛顿法和梯度下降;

3、Jensen不等式:

凸函数;Jensen不等式

概率论:

1、积分学:

牛顿-莱布尼茨公式

2、概率空间

随机变量与概率:概率密度函数的积分;条件概率;共轭分布;

概率分布:

1)两点分布/贝努力分布;

2)二项分布;

3)泊松分布;

4)均匀分布;

5)指数分布;

6)正态分布/高斯分布;

3、大数定律和中心极限

线性代数:

1)矩阵

2)线性回归;

到此,相信大家对“Python数据抓取、分析、挖掘和分布式计算内容有哪些”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


当前名称:Python数据抓取、分析、挖掘和分布式计算内容有哪些
URL链接:http://csdahua.cn/article/ihscsc.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流