Hadoop和spark的性能比较

本篇内容主要讲解“Hadoop和spark的性能比较”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Hadoop和spark的性能比较”吧!

本篇内容主要讲解“Hadoop和spark的性能比较”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Hadoop和spark的性能比较”吧!  

创新互联公司专注于企业营销型网站建设、网站重做改版、丰南网站定制设计、自适应品牌网站建设、H5页面制作商城建设、集团公司官网建设、成都外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为丰南等各大城市提供网站开发制作服务。

Hadoop和spark的性能比较

Spark在内存中运行速度比Hadoop快100倍,在磁盘上运行速度快10倍。众所周知,Spark在数量只有十分之一的机器上,对100TB数据进行排序的速度比Hadoop MapReduce快3倍。此外,Spark在机器学习应用中的速度同样更快,例如Naive Bayes和k-means。

由处理速度衡量的Spark性能之所以比Hadoop更优,原因如下:

1、每次运行MapReduce任务时,Spark都不会受到输入输出的限制。事实证明,应用程序的速度要快得多。

2、Spark的DAG可以在各个步骤之间进行优化。Hadoop在MapReduce步骤之间没有任何周期性连接,这意味着在该级别不会发生性能调整。

但是,如果Spark与其他共享服务在YARN上运行,则性能可能会降低并导致RAM开销内存泄漏。出于这个原因,如果用户有批处理的诉求,Hadoop被认为是更高效的系统。


分享标题:Hadoop和spark的性能比较
新闻来源:http://csdahua.cn/article/iojjgs.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流