RDD持久化性能测试步骤

1 前言

创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都做网站、网站设计、外贸营销网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的凤山网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

Java/Scala代码通过设置开始时间和结束时间的方式来进行统计测试,其实不够准确,最好的方式就是把Spark应用部署到集群中,通过观察Spark UI的统计信息来获取时间,这样会更准备,尤其是希望观察RDD缓存时对性能带来的提升。

为了更好查看Spark UI提供的信息,通过操作方便简单,下面会使用Spark Shell的方式来做测试,这样一来,就可以轻松使用Spark Shelllocalhost:8080来查看应用程序的执行信息。

2 数据准备

测试是基于大数据计算的经典helloword案例—wordcount程序来进行,所以首先应该准备一定量的数据,这里我准备的数据如下:

yeyonghao@yeyonghaodeMacBook-Pro:~$ ls -lh wordcount_text.txt
-rw-r--r--  1 yeyonghao  staff   127M 10  1 14:24 wordcount_text.txt

数据量不用太大,不然就需要等待很长时间,同时在进行RDD缓存时,也有可能会出现没有足够内容来缓存RDD的问题;数据量也不要太小,太小的话,时间差别不大,很难观察出效果。

3 测试

3.1 启动Spark Shell

如下:

yeyonghao@yeyonghaodeMacBook-Pro:~$ sudo spark-shell --driver-memory 2G
Password:
log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Using Spark's repl log4j profile: org/apache/spark/log4j-defaults-repl.properties
To adjust logging level use sc.setLogLevel("INFO")
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.6.2
      /_/

Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_181)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.
18/10/01 14:39:36 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
18/10/01 14:39:36 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
18/10/01 14:39:38 WARN ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 1.2.0
18/10/01 14:39:38 WARN ObjectStore: Failed to get database default, returning NoSuchObjectException
18/10/01 14:39:39 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
18/10/01 14:39:39 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
SQL context available as sqlContext.

3.2 加载文本数据并缓存RDD

先加载数据,并设置transformation,如下:

scala> val linesRDD = sc.textFile("/Users/yeyonghao/wordcount_text.txt")
linesRDD: org.apache.spark.rdd.RDD[String] = /Users/yeyonghao/wordcount_text.txt MapPartitionsRDD[1] at textFile at :27

scala> val retRDD = linesRDD.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
retRDD: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at :29

缓存RDD

scala> retRDD.cache()
res0: retRDD.type = ShuffledRDD[4] at reduceByKey at :29

3.3 初次触发action操作并观察结果

注意上面的操作并不会触发Spark的计算操作,只有执行action算子时才会触发,如下:

scala> retRDD.count()
res1: Long = 1388678

此时打开Spark UI,观察执行结果:

Jobs界面:
RDD持久化性能测试步骤

Stages界面:
RDD持久化性能测试步骤

Storage界面:
RDD持久化性能测试步骤

分析:显然可以看到DAG图中,reduceByKey中有个绿色的点,说明该RDD已经被显示地缓存下来,这样在查看Storage界面时,也可以看到该缓存的RDD,另外需要说明的是,在执行该次操作中,所有的步骤都是需要执行的,然后产生了retRDD之后才将其缓存下来,这样下一次,如果再需要使用到retRDD时,就可以不用执行前面的操作了,可以节省很多时间,当然,不可否认地是,在本次操作中,缓存RDD时也是需要使用一定的时间的。

3.4 再次执行action操作

scala> retRDD.count()
res1: Long = 1388678

Jobs界面:
RDD持久化性能测试步骤

Stages界面:
RDD持久化性能测试步骤

Storage界面:
RDD持久化性能测试步骤

分析,通过上面的观察也可以知道,retRDD前面的操作全部都没有执行,它是直接利用缓存的RDD来执行后面的action操作,所以时间上有大幅度地提升。

3.5 不执行RDD缓存,多次执行action操作(重要)

重新打开Spark-shell,执行下面的操作:

scala> val linesRDD = sc.textFile("/Users/yeyonghao/wordcount_text.txt")
linesRDD: org.apache.spark.rdd.RDD[String] = /Users/yeyonghao/wordcount_text.txt MapPartitionsRDD[1] at textFile at :27

scala> val retRDD = linesRDD.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
retRDD: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at :29

scala> retRDD.count()
res0: Long = 1388678

scala> retRDD.count()
res1: Long = 1388678

scala> retRDD.count()
res2: Long = 1388678

Jos界面:
RDD持久化性能测试步骤

所有jobstages界面:
RDD持久化性能测试步骤

storage界面:
RDD持久化性能测试步骤

再查看后面两个job其中一个的详细stages界面:
RDD持久化性能测试步骤

可以看到这与前面执行RDD缓存操作之后是一样的,是因为在linestage中,最后一个RDD即便不显示执行RDD缓存的操作,那么它也会保存在内存当中,当然,比如这里的retRDD再执行了一次transformation操作,那么当执行action操作之后`retRDD就不会被缓存下来了,经过迭代式计算之后,它转化为下一个RDD;然而如果是显式缓存了retRDD的操作,在storage界面可以看到它,不管它后面再执行怎么样的操作,retRDD还是会存在内存当中,这就是主动缓存RDD跟非主动缓存RDD的最大区别。

4 说明

有很多细节的东西这里是没有办法展示的,这需要进一步去实践操作,如果可以,阅读源码也是十分不错的选择,当然这里也提供了十分不错的验证方式,通过这样一个操作的过程,相信会比在抽象概念上去理解RDD持久化会有更大的提升。


文章题目:RDD持久化性能测试步骤
网页链接:http://csdahua.cn/article/iphssj.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流