如何使用AQS共享锁,Semaphore、CountDownLatch

这篇文章主要讲解了“如何使用AQS共享锁,Semaphore、CountDownLatch”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何使用AQS共享锁,Semaphore、CountDownLatch”吧!

徐州网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、响应式网站开发等网站项目制作,到程序开发,运营维护。创新互联从2013年开始到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。

共享锁 和 AQS

1. 基于 AQS 实现的锁有哪些?

如何使用AQS共享锁,Semaphore、CountDownLatch  
图 18-1 基于 AQS 实现的锁

AQS(AbstractQueuedSynchronizer),是 Java 并发包中非常重要的一个类,大部分锁的实现也是基于 AQS 实现的,包括:

  • ReentrantLock,可重入锁。这个是我们最开始介绍的锁,也是最常用的锁。通常会与 synchronized 做比较使用。
  • ReentrantReadWriteLock,读写锁。读锁是共享锁、写锁是独占锁。
  • Semaphore,信号量锁。主要用于控制流量,比如:数据库连接池给你分配10个链接,那么让你来一个连一个,连到10个还没有人释放,那你就等等。
  • CountDownLatch,闭锁。Latch 门闩的意思,比如:说四个人一个漂流艇,坐满了就推下水。

这一章节我们主要来介绍 Semaphore ,信号量锁的实现,其实也就是介绍一个关于共享锁的使用和源码分析。

2. Semaphore 共享锁使用

Semaphore semaphore = new Semaphore(2, false); // 构造函数入参,permits:信号量、fair:公平锁/非公平锁
for (int i = 0; i < 8; i++) {
    new Thread(() -> {
        try {
            semaphore.acquire();
            System.out.println(Thread.currentThread().getName() + "蹲坑");
            Thread.sleep(1000L);
        } catch (InterruptedException ignore) {
        } finally {
            semaphore.release();
        }
    }, "蹲坑编号:" + i).start();
}
 

这里我们模拟了一个在高速服务区,厕所排队蹲坑的场景。由于坑位有限,为了避免造成拥挤和踩踏,保安人员在门口拦着,感觉差不多,一次释放两个进去,一直到都释放。你也可以想成早上坐地铁上班,或者旺季去公园,都是一批一批的放行

「测试结果」

蹲坑编号:0蹲坑
蹲坑编号:1蹲坑

蹲坑编号:2蹲坑
蹲坑编号:3蹲坑

蹲坑编号:4蹲坑
蹲坑编号:5蹲坑

蹲坑编号:6蹲坑
蹲坑编号:7蹲坑

Process finished with exit code 0
 
  • Semaphore 的构造函数可以传递是公平锁还是非公平锁,最终的测试结果也不同,可以自行尝试。
  • 测试运行时,会先输出     0坑、1坑,     之后2坑、3坑...,每次都是这样两个,两个的释放。这就是 Semaphore 信号量锁的作用。 

3. Semaphore 源码分析

3.1 构造函数
public Semaphore(int permits) {
    sync = new NonfairSync(permits);
}

public Semaphore(int permits, boolean fair) {
    sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}
 

permits:n. 许可证,特许证(尤指限期的)

默认情况下只需要传入 permits 许可证数量即可,也就是一次允许放行几个线程。构造函数会创建非公平锁。如果你需要使用 Semaphore 共享锁中的公平锁,那么可以传入第二个构造函数的参数 fair = false/true。true:FairSync,公平锁。在我们前面的章节已经介绍了公平锁相关内容和实现,以及CLH、MCS 《公平锁介绍》

「初始许可证数量」

FairSync/NonfairSync(int permits) {
    super(permits);
}

Sync(int permits) {
    setState(permits);
}

protected final void setState(int newState) {
    state = newState;
}
 

在构造函数初始化的时候,无论是公平锁还是非公平锁,都会设置 AQS 中 state 数量值。这个值也就是为了下文中可以获取的信号量扣减和增加的值。 

3.2 acquire 获取信号量
方法描述
semaphore.acquire()一次获取一个信号量,响应中断
semaphore.acquire(2)一次获取n个信号量,响应中断(一次占2个坑)
semaphore.acquireUninterruptibly()一次获取一个信号量,不响应中断
semaphore.acquireUninterruptibly(2)一次获取n个信号量,不响应中断
  • 其实获取信号量的这四个方法,主要就是,一次获取几个和是否响应中断的组合。
  • semaphore.acquire(),源码中实际调用的方法是,     sync.acquireSharedInterruptibly(1)。也就是相应中断,一次只占一个坑。
  • semaphore.acquire(2),同理这个就是一次要占两个名额,也就是许可证。     生活中的场景就是我给我朋友排的对,她来了,进来吧。 
3.3 acquire 释放信号量
方法描述
semaphore.release()一次释放一个信号量
semaphore.release(2)一次获取n个信号量

有获取就得有释放,获取了几个信号量就要释放几个信号量。当然你可以尝试一下,获取信号量 semaphore.acquire(2) 两个,释放信号量 semaphore.release(1),看看运行效果 

3.4 公平锁实现

「信号量获取过程」,一直到公平锁实现。semaphore.acquire -> sync.acquireSharedInterruptibly(permits) -> tryAcquireShared(arg)

semaphore.acquire(1);

public void acquire(int permits) throws InterruptedException {
    if (permits < 0) throw new IllegalArgumentException();
    sync.acquireSharedInterruptibly(permits);
}

public final void acquireSharedInterruptibly(int arg)
        throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    if (tryAcquireShared(arg) < 0)
        doAcquireSharedInterruptibly(arg);
}

「FairSync.tryAcquireShared」

protected int tryAcquireShared(int acquires) {
    for (;;) {
        if (hasQueuedPredecessors())
            return -1;
        int available = getState();
        int remaining = available - acquires;
        if (remaining < 0 ||
            compareAndSetState(available, remaining))
            return remaining;
    }
}
 
  • hasQueuedPredecessors,公平锁的主要实现逻辑都在于这个方法的使用。它的目的就是判断有线程排在自己前面没,以及把线程添加到队列中的逻辑实现。     在前面我们介绍过CLH等实现,可以往前一章节阅读
  • for (;;),是一个自旋的过程,通过 CAS 来设置 state 偏移量对应值。这样就可以避免多线程下竞争获取信号量冲突。
  • getState(),在构造函数中已经初始化 state 值,在这里获取信号量时就是使用 CAS 不断的扣减。
  • 另外需要注意,共享锁和独占锁在这里是有区别的,独占锁直接返回true/false,共享锁返回的是int值。
    • 如果该值小于0,则当前线程获取共享锁失败。
    • 如果该值大于0,则当前线程获取共享锁成功,并且接下来其他线程尝试获取共享锁的行为很可能成功。
    • 如果该值等于0,则当前线程获取共享锁成功,但是接下来其他线程尝试获取共享锁的行为会失败。
3.5 非公平锁实现

「NonfairSync.nonfairTryAcquireShared」

protected int tryAcquireShared(int acquires) {
    return nonfairTryAcquireShared(acquires);
}

final int nonfairTryAcquireShared(int acquires) {
    for (;;) {
        int available = getState();
        int remaining = available - acquires;
        if (remaining < 0 ||
            compareAndSetState(available, remaining))
            return remaining;
    }
}
 
  • 有了公平锁的实现,非公平锁的理解就比较简单了,只是拿去了     if (hasQueuedPredecessors()) 的判断操作。
  • 其他的逻辑实现都和公平锁一致。
 
3.6 获取信号量失败,加入同步等待队列

在公平锁和非公平锁的实现中,我们已经看到正常获取信号量的逻辑。那么如果此时不能正常获取信号量呢?其实这部分线程就需要加入到同步队列。

「doAcquireSharedInterruptibly」

public final void acquireSharedInterruptibly(int arg)
        throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    if (tryAcquireShared(arg) < 0)
        doAcquireSharedInterruptibly(arg);
}

private void doAcquireSharedInterruptibly(int arg)
    throws InterruptedException {
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head) {
                int r = tryAcquireShared(arg);
                if (r >= 0) {
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}
 
  • 首先     doAcquireSharedInterruptibly 方法来自 AQS 的内部方法,与我们在学习竞争锁时有部分知识点相同,但也有一些差异。比如:     addWaiter(Node.SHARED),     tryAcquireShared,我们主要介绍下这内容。
  • Node.SHARED,其实没有特殊含义,它只是一个标记作用,用于判断是否共享。     final boolean isShared() { return nextWaiter == SHARED; }
  • tryAcquireShared,主要是来自     Semaphore 共享锁中公平锁和非公平锁的实现。用来获取同步状态。
  • setHeadAndPropagate(node, r),如果r > 0,同步成功后则将当前线程结点设置为头结点,同时 helpGC,p.next = null,断链操作。
  • shouldParkAfterFailedAcquire(p, node),调整同步队列中 node 结点的状态,并判断是否应该被挂起。这在我们之前关于锁的文章中已经介绍。
  • parkAndCheckInterrupt(),判断是否需要被中断,如果中断直接抛出异常,当前结点请求也就结束。
  • cancelAcquire(node),取消该节点的线程请求。

4. CountDownLatch 共享锁使用

CountDownLatch 也是共享锁的一种类型,之所以在这里体现下,是因为它和 Semaphore 共享锁,既相似有不同。

CountDownLatch 更多体现的组团一波的思想,同样是控制人数,但是需要够一窝。比如:我们说过的4个人一起上皮划艇、两个人一起上跷跷板、2个人一起蹲坑我没见过,这样的方式就是门闩 CountDownLatch 锁的思想。

public static void main(String[] args) throws InterruptedException {
    CountDownLatch latch = new CountDownLatch(10);
    ExecutorService exec = Executors.newFixedThreadPool(10);
    for (int i = 0; i < 10; i++) {
        exec.execute(() -> {
            try {
                int millis = new Random().nextInt(10000);
                System.out.println("等待游客上船,耗时:" + millis + "(millis)");
                Thread.sleep(millis);
            } catch (Exception ignore) {
            } finally {
                latch.countDown(); // 完事一个扣减一个名额
            }
        });
    }
    // 等待游客
    latch.await();
    System.out.println("船长急躁了,开船!");
    // 关闭线程池
    exec.shutdown();
}
 
  • 这一个公园游船的场景案例,等待10个乘客上传,他们比较墨迹。
  • 上一个扣减一个     latch.countDown()
  • 等待游客都上船     latch.await()
  • 最后船长开船!!     急躁了

「测试结果」

等待游客上船,耗时:6689(millis)
等待游客上船,耗时:2303(millis)
等待游客上船,耗时:8208(millis)
等待游客上船,耗时:435(millis)
等待游客上船,耗时:9489(millis)
等待游客上船,耗时:4937(millis)
等待游客上船,耗时:2771(millis)
等待游客上船,耗时:4823(millis)
等待游客上船,耗时:1989(millis)
等待游客上船,耗时:8506(millis)
船长急躁了,开船!

Process finished with exit code 0
 
  • 在你实际的测试中会发现,     船长急躁了,开船!,会需要等待一段时间。
  • 这里体现的就是门闩的思想,组队、一波带走。
  • CountDownLatch 的实现与 Semaphore  基本相同、细节略有差异,就不再做源码分析了。
 

感谢各位的阅读,以上就是“如何使用AQS共享锁,Semaphore、CountDownLatch”的内容了,经过本文的学习后,相信大家对如何使用AQS共享锁,Semaphore、CountDownLatch这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


网站题目:如何使用AQS共享锁,Semaphore、CountDownLatch
转载注明:http://csdahua.cn/article/isjhdg.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流