扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章给大家分享的是有关Java多线程中ReentrantLock与Condition有什么用的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
十余年的孟连网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站的优势是能够根据用户设备显示端的尺寸不同,自动调整孟连建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联建站从事“孟连网站设计”,“孟连网站推广”以来,每个客户项目都认真落实执行。
一、ReentrantLock类
1.1什么是reentrantlock
java.util.concurrent.lock中的Lock框架是锁定的一个抽象,它允许把锁定的实现作为Java类,而不是作为语言的特性来实现。这就为Lock的多种实现留下了空间,各种实现可能有不同的调度算法、性能特性或者锁定语义。ReentrantLock类实现了Lock,它拥有与synchronized相同的并发性和内存语义,但是添加了类似锁投票、定时锁等候和可中断锁等候的一些特性。此外,它还提供了在激烈争用情况下更佳的性能。(换句话说,当许多线程都想访问共享资源时,JVM可以花更少的时候来调度线程,把更多时间用在执行线程上。)
reentrant锁意味着什么呢?简单来说,它有一个与锁相关的获取计数器,如果拥有锁的某个线程再次得到锁,那么获取计数器就加1,然后锁需要被释放两次才能获得真正释放。这模仿了synchronized的语义;如果线程进入由线程已经拥有的监控器保护的synchronized块,就允许线程继续进行,当线程退出第二个(或者后续)synchronized块的时候,不释放锁,只有线程退出它进入的监控器保护的第一个synchronized块时,才释放锁。
1.2ReentrantLock与synchronized的比较
相同:ReentrantLock提供了synchronized类似的功能和内存语义。
不同:
(1)ReentrantLock功能性方面更全面,比如时间锁等候,可中断锁等候,锁投票等,因此更有扩展性。在多个条件变量和高度竞争锁的地方,用ReentrantLock更合适,ReentrantLock还提供了Condition,对线程的等待和唤醒等操作更加灵活,一个ReentrantLock可以有多个Condition实例,所以更有扩展性。
(2)ReentrantLock的性能比synchronized会好点。
(3)ReentrantLock提供了可轮询的锁请求,他可以尝试的去取得锁,如果取得成功则继续处理,取得不成功,可以等下次运行的时候处理,所以不容易产生死锁,而synchronized则一旦进入锁请求要么成功,要么一直阻塞,所以更容易产生死锁。
1.3ReentrantLock扩展的功能
1.3.1实现可轮询的锁请求
在内部锁中,死锁是致命的——唯一的恢复方法是重新启动程序,唯一的预防方法是在构建程序时不要出错。而可轮询的锁获取模式具有更完善的错误恢复机制,可以规避死锁的发生。
如果你不能获得所有需要的锁,那么使用可轮询的获取方式使你能够重新拿到控制权,它会释放你已经获得的这些锁,然后再重新尝试。可轮询的锁获取模式,由tryLock()方法实现。此方法仅在调用时锁为空闲状态才获取该锁。如果锁可用,则获取锁,并立即返回值true。如果锁不可用,则此方法将立即返回值false。此方法的典型使用语句如下:
Lock lock = ...; if (lock.tryLock()) { try { // manipulate protected state } finally { lock.unlock(); } } else { // perform alternative actions }
1.3.2实现可定时的锁请求
当使用内部锁时,一旦开始请求,锁就不能停止了,所以内部锁给实现具有时限的活动带来了风险。为了解决这一问题,可以使用定时锁。当具有时限的活
动调用了阻塞方法,定时锁能够在时间预算内设定相应的超时。如果活动在期待的时间内没能获得结果,定时锁能使程序提前返回。可定时的锁获取模式,由tryLock(long,TimeUnit)方法实现。
1.3.3实现可中断的锁获取请求
可中断的锁获取操作允许在可取消的活动中使用。lockInterruptibly()方法能够使你获得锁的时候响应中断。
1.4ReentrantLock不好与需要注意的地方
(1)lock必须在finally块中释放。否则,如果受保护的代码将抛出异常,锁就有可能永远得不到释放!这一点区别看起来可能没什么,但是实际上,它极为重要。忘记在finally块中释放锁,可能会在程序中留下一个定时炸弹,当有一天炸弹爆炸时,您要花费很大力气才有找到源头在哪。而使用同步,JVM将确保锁会获得自动释放
(2)当JVM用synchronized管理锁定请求和释放时,JVM在生成线程转储时能够包括锁定信息。这些对调试非常有价值,因为它们能标识死锁或者其他异常行为的来源。Lock类只是普通的类,JVM不知道具体哪个线程拥有Lock对象。
二、条件变量Condition
条件变量很大一个程度上是为了解决Object.wait/notify/notifyAll难以使用的问题。
我们通过一个实际的例子来解释Condition的用法:
我们要打印1到9这9个数字,由A线程先打印1,2,3,然后由B线程打印4,5,6,然后再由A线程打印7,8,9. 这道题有很多种解法,现在我们使用Condition来做这道题
package cn.outofmemory.locks; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class App { static class NumberWrapper { public int value = 1; } public static void main(String[] args) { //初始化可重入锁 final Lock lock = new ReentrantLock(); //第一个条件当屏幕上输出到3 final Condition reachThreeCondition = lock.newCondition(); //第二个条件当屏幕上输出到6 final Condition reachSixCondition = lock.newCondition(); //NumberWrapper只是为了封装一个数字,一边可以将数字对象共享,并可以设置为final //注意这里不要用Integer, Integer 是不可变对象 final NumberWrapper num = new NumberWrapper(); //初始化A线程 Thread threadA = new Thread(new Runnable() { @Override public void run() { //需要先获得锁 lock.lock(); try { System.out.println("threadA start write"); //A线程先输出前3个数 while (num.value <= 3) { System.out.println(num.value); num.value++; } //输出到3时要signal,告诉B线程可以开始了 reachThreeCondition.signal(); } finally { lock.unlock(); } lock.lock(); try { //等待输出6的条件 reachSixCondition.await(); System.out.println("threadA start write"); //输出剩余数字 while (num.value <= 9) { System.out.println(num.value); num.value++; } } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } } ); Thread threadB = new Thread(new Runnable() { @Override public void run() { try { lock.lock(); while (num.value <= 3) { //等待3输出完毕的信号 reachThreeCondition.await(); } } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } try { lock.lock(); //已经收到信号,开始输出4,5,6 System.out.println("threadB start write"); while (num.value <= 6) { System.out.println(num.value); num.value++; } //4,5,6输出完毕,告诉A线程6输出完了 reachSixCondition.signal(); } finally { lock.unlock(); } } } ); //启动两个线程 threadB.start(); threadA.start(); } }
上述代码中有完整的注释,请参考注释,理解Condition的用法。
基本思路就是首先要A线程先写1,2,3,这时候B线程应该等待reachThredCondition信号,而当A线程写完3之后就通过signal告诉B线程“我写到3了,该你了”,这时候A线程要等嗲reachSixCondition信号,同时B线程得到通知,开始写4,5,6,写完4,5,6之后B线程通知A线程reachSixCondition条件成立了,这时候A线程就开始写剩下的7,8,9了。条件(也称为条件队列或条件变量)为线程提供了一个含义,以便在某个状态条件现在可能为true的另一个线程通知它之前,一直挂起该线程(即让其“等待”)。因为访问此共享状态信息发生在不同的线程中,所以它必须受保护,因此要将某种形式的锁与该条件相关联。等待提供一个条件的主要属性是:以原子方式释放相关的锁,并挂起当前线程,就像Object.wait做的那样。
上述API说明表明条件变量需要与锁绑定,而且多个Condition需要绑定到同一锁上。前面的Lock中提到,获取一个条件变量的方法是Lock.newCondition()。
voidawait()throwsInterruptedException; voidawaitUninterruptibly(); longawaitNanos(longnanosTimeout)throwsInterruptedException; booleanawait(longtime,TimeUnitunit)throwsInterruptedException; booleanawaitUntil(Datedeadline)throwsInterruptedException; voidsignal(); voidsignalAll();
以上是Condition接口定义的方法,await*对应于Object.wait,signal对应于Object.notify,signalAll对应于Object.notifyAll。特别说明的是Condition的接口改变名称就是为了避免与Object中的wait/notify/notifyAll的语义和使用上混淆,因为Condition同样有wait/notify/notifyAll方法。
每一个Lock可以有任意数据的Condition对象,Condition是与Lock绑定的,所以就有Lock的公平性特性:如果是公平锁,线程为按照FIFO的顺序从Condition.await中释放,如果是非公平锁,那么后续的锁竞争就不保证FIFO顺序了。
一个使用Condition实现生产者消费者的模型例子如下。
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class ProductQueue{ private final T[] items; private final Lock lock = new ReentrantLock(); private Condition notFull = lock.newCondition(); private Condition notEmpty = lock.newCondition(); // private int head, tail, count; public ProductQueue(int maxSize) { items = (T[]) new Object[maxSize]; } public ProductQueue() { this(10); } public void put(T t) throws InterruptedException { lock.lock(); try { while (count == getCapacity()) { notFull.await(); } items[tail] = t; if (++tail == getCapacity()) { tail = 0; } ++count; notEmpty.signalAll(); } finally { lock.unlock(); } } public T take() throws InterruptedException { lock.lock(); try { while (count == 0) { notEmpty.await(); } T ret = items[head]; items[head] = null; //GC // if (++head == getCapacity()) { head = 0; } --count; notFull.signalAll(); return ret; } finally { lock.unlock(); } } public int getCapacity() { return items.length; } public int size() { lock.lock(); try { return count; } finally { lock.unlock(); } } }
在这个例子中消费take()需要队列不为空,如果为空就挂起(await()),直到收到notEmpty的信号;生产put()需要队列不满,如果满了就挂起(await()),直到收到notFull的信号。
可能有人会问题,如果一个线程lock()对象后被挂起还没有unlock,那么另外一个线程就拿不到锁了(lock()操作会挂起),那么就无法通知(notify)前一个线程,这样岂不是“死锁”了?
2.1await*操作
上一节中说过多次ReentrantLock是独占锁,一个线程拿到锁后如果不释放,那么另外一个线程肯定是拿不到锁,所以在lock.lock()和lock.unlock()之间可能有一次释放锁的操作(同样也必然还有一次获取锁的操作)。我们再回头看代码,不管take()还是put(),在进入lock.lock()后唯一可能释放锁的操作就是await()了。也就是说await()操作实际上就是释放锁,然后挂起线程,一旦条件满足就被唤醒,再次获取锁!
public final void await() throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); int savedState = fullyRelease(node); int interruptMode = 0; while (!isOnSyncQueue(node)) { LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); }
上面是await()的代码片段。上一节中说过,AQS在获取锁的时候需要有一个CHL的FIFO队列,所以对于一个Condition.await()而言,如果释放了锁,要想再一次获取锁那么就需要进入队列,等待被通知获取锁。完整的await()操作是安装如下步骤进行的:
将当前线程加入Condition锁队列。特别说明的是,这里不同于AQS的队列,这里进入的是Condition的FIFO队列。后面会具体谈到此结构。进行2。
释放锁。这里可以看到将锁释放了,否则别的线程就无法拿到锁而发生死锁。进行3。
自旋(while)挂起,直到被唤醒或者超时或者CACELLED等。进行4。
获取锁(acquireQueued)。并将自己从Condition的FIFO队列中释放,表明自己不再需要锁(我已经拿到锁了)。
这里再回头介绍Condition的数据结构。我们知道一个Condition可以在多个地方被await*(),那么就需要一个FIFO的结构将这些Condition串联起来,然后根据需要唤醒一个或者多个(通常是所有)。所以在Condition内部就需要一个FIFO的队列。
private transient Node firstWaiter; private transient Node lastWaiter;
上面的两个节点就是描述一个FIFO的队列。我们再结合前面提到的节点(Node)数据结构。我们就发现Node.nextWaiter就派上用场了!nextWaiter就是将一系列的Condition.await*串联起来组成一个FIFO的队列。
2.2signal/signalAll操作
await*()清楚了,现在再来看signal/signalAll就容易多了。按照signal/signalAll的需求,就是要将Condition.await*()中FIFO队列中第一个Node唤醒(或者全部Node)唤醒。尽管所有Node可能都被唤醒,但是要知道的是仍然只有一个线程能够拿到锁,其它没有拿到锁的线程仍然需要自旋等待,就上上面提到的第4步(acquireQueued)。
private void doSignal(Node first) { do { if ( (firstWaiter = first.nextWaiter) == null) lastWaiter = null; first.nextWaiter = null; } while (!transferForSignal(first) && (first = firstWaiter) != null); } private void doSignalAll(Node first) { lastWaiter = firstWaiter = null; do { Node next = first.nextWaiter; first.nextWaiter = null; transferForSignal(first); first = next; } while (first != null); }
上面的代码很容易看出来,signal就是唤醒Condition队列中的第一个非CANCELLED节点线程,而signalAll就是唤醒所有非CANCELLED节点线程。当然了遇到CANCELLED线程就需要将其从FIFO队列中剔除。
final boolean transferForSignal(Node node) { if (!compareAndSetWaitStatus(node, Node.CONDITION, 0)) return false; Node p = enq(node); int c = p.waitStatus; if (c > 0 || !compareAndSetWaitStatus(p, c, Node.SIGNAL)) LockSupport.unpark(node.thread); return true; }
上面就是唤醒一个await*()线程的过程,根据前面的小节介绍的,如果要unpark线程,并使线程拿到锁,那么就需要线程节点进入AQS的队列。所以可以看到在LockSupport.unpark之前调用了enq(node)操作,将当前节点加入到AQS队列。
感谢各位的阅读!关于“Java多线程中ReentrantLock与Condition有什么用”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流