扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要为大家展示了“Java+opencv3.2.0如何实现hough圆检测功能”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Java+opencv3.2.0如何实现hough圆检测功能”这篇文章吧。
创新互联公司主营眉山网站建设的网络公司,主营网站建设方案,重庆APP软件开发,眉山h5成都微信小程序搭建,眉山网站营销推广欢迎眉山等地区企业咨询
hough圆检测和hough线检测的原理近似,对于圆来说,在参数坐标系中表示为C:(x,y,r)。
函数:
Imgproc.HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius)
参数说明:
image:源图像
circles:检测到的圆的输出矢量(x,y,r)
method:使用的检测方法,目前只有一种Imgproc.HOUGH_GRADIENT
dp:检测圆心的累加器图像与源图像之间的比值倒数
minDist:检测到的圆的圆心之间的最小距离
param1:method设置的检测方法对应参数,针对HOUGH_GRADIENT,表示边缘检测算子的高阈值(低阈值是高阈值的一半),默认值100
param2:method设置的检测方法对应参数,针对HOUGH_GRADIENT,表示累加器的阈值。值越小,检测到的无关的圆
minRadius:圆半径的最小半径,默认为0
maxRadius:圆半径的最大半径,默认为0(若minRadius和maxRadius都默认为0,则HoughCircles函数会自动计算半径)
示例代码:
public static void main(String[] args) { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); Mat src = Imgcodecs.imread("F:\\websbook_com_1589226.jpg"); Mat dst = src.clone(); Imgproc.cvtColor(src, dst, Imgproc.COLOR_BGR2GRAY); Mat circles = new Mat(); Imgproc.HoughCircles(dst, circles, Imgproc.HOUGH_GRADIENT, 1, 100, 440, 50, 0, 345); // Imgproc.HoughCircles(dst, circles, Imgproc.HOUGH_GRADIENT, 1, 100, // 440, 50, 0, 0); for (int i = 0; i < circles.cols(); i++) { double[] vCircle = circles.get(0, i); Point center = new Point(vCircle[0], vCircle[1]); int radius = (int) Math.round(vCircle[2]); // circle center Imgproc.circle(src, center, 3, new Scalar(0, 255, 0), -1, 8, 0); // circle outline Imgproc.circle(src, center, radius, new Scalar(0, 0, 255), 3, 8, 0); } Imgcodecs.imwrite("F:\\dst2.jpg", src); }
源图像:
输出图像:
以上是“Java+opencv3.2.0如何实现hough圆检测功能”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流