大数据开发常见的9种数据分析手段分别是什么

今天给大家介绍一下大数据开发常见的9种数据分析手段分别是什么。文章的内容小编觉得不错,现在给大家分享一下,觉得有需要的朋友可以了解一下,希望对大家有所帮助,下面跟着小编的思路一起来阅读吧。

创新互联公司长期为上千客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为旌阳企业提供专业的网站建设、做网站,旌阳网站改版等技术服务。拥有十余年丰富建站经验和众多成功案例,为您定制开发。

数据分析是从数据中提取有价值信息的过程,过程中需要对数据进行各种处理和归类,只有掌握了正确的数据分类方法和数据处理模式,才能起到事半功倍的效果,以下是数据分析员必备的9种数据分析思维模式:

1. 分类

分类是一种基本的数据分析方式,数据根据其特点,可将数据对象划分为不同的部分和类型,再进一步分析,能够进一步挖掘事物的本质。

2. 回归

回归是一种运用广泛的统计分析方法,可以通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各参数,然后评价回归模型是否能够很好的拟合实测数据,如果能够很好的拟合,则可以根据自变量作进一步预测。

3. 聚类

聚类是根据数据的内在性质将数据分成一些聚合类,每一聚合类中的元素尽可能具有相同的特性,不同聚合类之间的特性差别尽可能大的一种分类方式,其与分类分析不同,所划分的类是未知的,因此,聚类分析也称为无指导或无监督的学习。

数据聚类是对于静态数据分析的一门技术,在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息。

4. 相似匹配

相似匹配是通过一定的方法,来计算两个数据的相似程度,相似程度通常会用一个是百分比来衡量。相似匹配算法被用在很多不同的计算场景,如数据清洗、用户输入纠错、推荐统计、剽窃检测系统、自动评分系统、网页搜索和DNA序列匹配等领域。

5. 频繁项集

频繁项集是指事例中频繁出现的项的集合,如啤酒和尿不湿,Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集,目前已被广泛的应用在商业、网络安全等领域。

6. 统计描述

统计描述是根据数据的特点,用一定的统计指标和指标体系,表明数据所反馈的信息,是对数据分析的基础处理工作,主要方法包括:平均指标和变异指标的计算、资料分布形态的图形表现等。

7. 链接预测

链接预测是一种预测数据之间本应存有的关系的一种方法,链接预测可分为基于节点属性的预测和基于网络结构的预测,基于节点之间属性的链接预测包括分析节点资审的属性和节点之间属性的关系等信息,利用节点信息知识集和节点相似度等方法得到节点之间隐藏的关系。与基于节点属性的链接预测相比,网络结构数据更容易获得。复杂网络领域一个主要的观点表明,网络中的个体的特质没有个体间的关系重要。因此基于网络结构的链接预测受到越来越多的关注。

8. 数据压缩

数据压缩是指在不丢失有用信息的前提下,缩减数据量以减少存储空间,提高其传输、存储和处理效率,或按照一定的算法对数据进行重新组织,减少数据的冗余和存储的空间的一种技术方法。数据压缩分为有损压缩和无损压缩。

9. 因果分析

因果分析法是利用事物发展变化的因果关系来进行预测的方法,运用因果分析法进行市场预测,主要是采用回归分析方法,除此之外,计算经济模型和投人产出分析等方法也较为常用。

以上就是大数据开发常见的9种数据分析手段分别是什么的全部内容了,更多与大数据开发常见的9种数据分析手段分别是什么相关的内容可以搜索创新互联之前的文章或者浏览下面的文章进行学习哈!相信小编会给大家增添更多知识,希望大家能够支持一下创新互联!


当前名称:大数据开发常见的9种数据分析手段分别是什么
文章来源:http://csdahua.cn/article/jcjdod.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流