使用Python怎么清洗数据

今天就跟大家聊聊有关使用Python怎么清洗数据,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:空间域名、网站空间、营销软件、网站建设、甘泉网站维护、网站推广。

下面我们用一副待清洗的扑克牌作为示例,假设它保存在代码文件相同的目录下,在 Jupyter Lab 环境中运行以下代码:

import numpy as np import pandas as pd  # 设置最多显示 10 行 pd.set_option('max_rows', 10)  # 从 Excel 文件中读取原始数据 df = pd.read_excel(     '待清洗的扑克牌数据集.xlsx' )  df

返回结果如下:

使用Python怎么清洗数据

这幅待清洗的扑克牌数据集,有一些异常情况,包括:大小王的花色是缺失的,有两张重复的黑桃:spades: A,还有一张异常的 黑桃 :spades:  30。

1. 如何查找异常?

在正式开始清洗数据之前,往往需要先把异常数据找出来,观察异常数据的特征,然后再决定清洗的方法。

# 查找「花色」缺失的行 df[df.花色.isnull()]
使用Python怎么清洗数据
  1. # 查找完全重复的行 

  2. df[df.duplicated()]

使用Python怎么清洗数据
  1. # 查找某一列重复的行 

  2. df[df.编号.duplicated()]

使用Python怎么清洗数据
  1. # 查找牌面的所有唯一值 

  2. df.牌面.unique()

返回结果:

array(['大王', '小王', 'A', '30', 4, 5, 6, 7, 8, 9, 10, 'J', 'Q', 'K', 2, 3],  dtype=object)

根据常识可以判断,牌面为 30 的是异常值。

# 查找「牌面」包含 30 的异常值 df[df.牌面.isin(['30'])]
使用Python怎么清洗数据
# 查找王牌,模糊匹配 df[df.牌面.str.contains(     '王', na=False )]
使用Python怎么清洗数据
# 查找编号在 1 到 5 之间的行 df[df.编号.between(1, 5)]
使用Python怎么清洗数据

查找某个区间,也可以用逻辑运算的方法来实现:

# 查找编号在 1 到 5 之间的行 df[(df.编号 >= 1)    & (df.编号 <= 5)]

其中「 & 」代表必须同时满足两边的条件,也就是「且」的意思。

还可以用下面等价的方法:

# 查找编号在 1 到 5 之间的行 df[~((df.编号 < 1)      | (df.编号 > 5))]

其中「 | 」代表两边的条件满足一个即可,也就是「或」的意思,「 ~ 」代表取反,也就是「非」的意思。

2. 如何排除重复?

使用 drop_duplicates() 函数,在排除重复之后,会得到一个新的数据框。

# 排除完全重复的行,默认保留第一行 df.drop_duplicates()

返回结果如下:

使用Python怎么清洗数据

如果想要改变原来的数据框,有两种方法,一种方法,是增加 inplace 参数:

# 排除重复后直接替换原来的数据框 df.drop_duplicates(     inplace=True )

另一种方法,是把得到的结果,重新赋值给原来的数据框:

# 排除重复后,重新赋值给原来的数据框 df = df.drop_duplicates()

如果想要按某一列排除重复的数据,那么指定相应的列名即可。

# 按某一列排除重复,默认保留第一行 df.drop_duplicates(['花色'])
使用Python怎么清洗数据

如果想要保留重复的最后一行,那么需要指定 keep 参数。

# 按某一列排除重复,并保留最后一行 df.drop_duplicates(     ['花色'], keep='last' )
使用Python怎么清洗数据

从上面两个返回结果的编号可以看出,不同方法的差异情况。

3. 如何删除缺失?

使用 dropna() 函数,默认删除包含缺失的行。为了更加简单易懂,我们用扑克牌中不重复的花色作为示例。

# 不重复的花色 color = df.drop_duplicates(     ['花色'] )  color
使用Python怎么清洗数据
# 删除包含缺失值的行 color.dropna()
使用Python怎么清洗数据

如果想要删除整行全部为空的行,那么需要指定 how 参数。

# 删除全部为空的行 color.dropna(how='all')
使用Python怎么清洗数据

如果想要删除包含缺失值的列,那么需要指定 axis 参数。

# 删除包含缺失值的列 color.dropna(axis=1)
使用Python怎么清洗数据

可以看到,包含缺失值的「花色」这一列被删除了。

4. 如何补全缺失?

使用 fillna() 函数,可以将缺失值填充为我们指定的值。

# 补全缺失值 color.fillna('Joker')
使用Python怎么清洗数据

可以看到,原来的 NaN 被填充为 Joker,在实际工作的应用中,通常填充为 0,也就是说, fillna(0) 是比较常见的用法。

如果想要使用临近的值来填充,那么需要指定 method 参数,例如:

# 用后面的值填充 color.fillna(method='bfill')
使用Python怎么清洗数据

可以看到,原来第一行的 NaN 替换成了第二行的「黑桃:spades:」。

其中 method 还有一些其他的可选参数,详情可以查看相关的帮助文档。

还有一种按字典填充的方法。为了让下面的演示更加直观易懂,我们先把索引为 2 的牌面设置为缺失值:

# 为了演示,先指定一个缺失值 color.loc[2, '牌面'] = np.nan  color
使用Python怎么清洗数据
# 按列自定义补全缺失值 color.fillna(     {'花色': 0, '牌面': 1} )
使用Python怎么清洗数据

可以看出,不同列的缺失值,可以填充为不同的值,花色这一列填充为 0,牌面这一列填充为 1,我在图中分别用红色的方框标记出来了。

5. 应用案例

下面 我们用 Python 代码,把这幅待清洗的扑克牌数据集,变成一副正常的扑克牌数据。

import numpy as np import pandas as pd  # 设置最多显示 10 行 pd.set_option('max_rows', 10)  # 从 Excel 文件中读取原始数据 df = pd.read_excel(     '待清洗的扑克牌数据集.xlsx' )  # 补全缺失值 df = df.fillna('Joker')  # 排除重复值 df = df.drop_duplicates()  # 修改异常值 df.loc[4, '牌面'] = 3  # 增加一张缺少的牌 df = df.append(     {'编号': 4,      '花色': '黑桃♠',      '牌面': 2},     ignore_index=True )  # 按编号排序 df = df.sort_values('编号')  # 重置索引 df = df.reset_index()  # 删除多余的列 df = df.drop(     ['index'], axis=1 )  # 把清洗好的数据保存到 Excel 文件 df.to_excel(     '完成清洗的扑克牌数据.xlsx',     index=False )  df

看完上述内容,你们对使用Python怎么清洗数据有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。


文章标题:使用Python怎么清洗数据
分享URL:http://csdahua.cn/article/jgdcdi.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流