第27讲:Type、Array、List、Tuple模式匹配实战解析

除了普通的×××、字符串类型的模式匹配,scala还提供了很多形式的模式匹配。例如Type、Array、List、Tuple

成都创新互联公司专注于泾源网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供泾源营销型网站建设,泾源网站制作、泾源网页设计、泾源网站官网定制、微信小程序开发服务,打造泾源网络公司原创品牌,更为您提供泾源网站排名全网营销落地服务。

我们通过代码来说明。

类型模式匹配:判断传入值的类型

    def match_type(t : Any) = t match {
      case p : Int => println("It is a Integer!")
      case p : String => println("It is a String! the content is :"+p)
      case m : Map[_,_] => m.foreach(println)
      case _ => println("Unknown Type")
    }
    
    match_type(1)
    match_type("Spark")
    match_type(Map("Spark"->"scala language"))

运行结果如下

It is a Integer!
It is a String! the content is :Spark
(Spark,scala language)

特殊说明Map[_,_]中的两个_,表示任意类型。等同于type Map = Predef.Map[A, B] 但是不能写成Map[Any,Any]

数组模式匹配:

    def match_array(arr : Any) = arr match {
      case Array(x) => println("Array(1):",x) // 长度为1的数组,x代表数组中的值
      case Array(x,y) =>  println("Array(2):",x,y) // 长度为2的数组,x代表数组中的第一个值
      case Array(x,_*) => println("任意一维数组:",x) //任意长度数组,取第一个值
      case Array(_*) => println("任意一维数组") //任意长度数组
     }
    
    match_array(Array(0))
    match_array(Array("spark"))
    match_array(Array("spark","scala"))
    match_array(Array("spark","scala",0,4))

列表匹配:

    def match_list(lst : Any) = lst match {
      case 0 :: Nil => println("List:"+0) //Nil表示空列表
      case List(x) => println("List:"+x)
      case x :: y :: Nil => println("List:"+x)
      case x :: tail => println("List:"+"多元素List") //tail表示List的剩下所有元素
    }
    
    match_list(List(0))
    match_list(List("spark"))
    match_list(List("spark","hadoop"))
    match_list(List("spark",1,2,4,5))

元组匹配

    def match_tuple(t : Any) = t match {
      case (0,_) => println("二元元组,第一个值为0")
      case (x,y) => println("二元元组,值为:"+x+","+y)
      case _ => println("something else")
    }
    
    match_tuple((0,'x'))
    match_tuple(('y','x'))
    match_tuple((0,1,2,3))


本文标题:第27讲:Type、Array、List、Tuple模式匹配实战解析
文章源于:http://csdahua.cn/article/jhespo.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流