扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要介绍“Python中的logging模块怎么使用”,在日常操作中,相信很多人在Python中的logging模块怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python中的logging模块怎么使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联建站主要从事成都网站建设、成都网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务铜陵,10多年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18982081108
日志总共分为以下五个级别,这个五个级别自下而上进行匹配 debug-->info-->warning-->error-->critical,默认最低级别为warning级别。
import logging logging.debug('调试信息') logging.info('正常信息') logging.warning('警告信息') logging.error('报错信息') logging.critical('严重错误信息')
WARNING:root:警告信息
ERROR:root:报错信息
CRITICAL:root:严重错误信息
v1版本无法指定日志的级别;无法指定日志的格式;只能往屏幕打印,无法写入文件。因此可以改成下述的代码。
import logging # 日志的基本配置 logging.basicConfig(filename='access.log', format='%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S %p', level=10) logging.debug('调试信息') # 10 logging.info('正常信息') # 20 logging.warning('警告信息') # 30 logging.error('报错信息') # 40 logging.critical('严重错误信息') # 50
可在logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有:
filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。
format参数中可能用到的格式化串:
%(name)s Logger的名字
%(levelno)s 数字形式的日志级别
%(levelname)s 文本形式的日志级别
%(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
%(filename)s 调用日志输出函数的模块的文件名
%(module)s 调用日志输出函数的模块名
%(funcName)s 调用日志输出函数的函数名
%(lineno)d 调用日志输出函数的语句所在的代码行
%(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
%(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
%(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
%(thread)d 线程ID。可能没有
%(threadName)s 线程名。可能没有
%(process)d 进程ID。可能没有
%(message)s用户输出的消息
v2版本不能指定字符编码;只能往文件中打印。
logging模块包含四种角色:logger、Filter、Formatter对象、Handler
logger:产生日志的对象
Filter:过滤日志的对象
Formatter对象:可以定制不同的日志格式对象,然后绑定给不同的Handler对象使用,以此来控制不同的Handler的日志格式
Handler:接收日志然后控制打印到不同的地方,FileHandler用来打印到文件中,StreamHandler用来打印到终端
''' critical=50 error =40 warning =30 info = 20 debug =10 ''' import logging # 1、logger对象:负责产生日志,然后交给Filter过滤,然后交给不同的Handler输出 logger = logging.getLogger(__file__) # 2、Filter对象:不常用,略 # 3、Handler对象:接收logger传来的日志,然后控制输出 h3 = logging.FileHandler('t1.log') # 打印到文件 h4 = logging.FileHandler('t2.log') # 打印到文件 sm = logging.StreamHandler() # 打印到终端 # 4、Formatter对象:日志格式 formmater1 = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S %p',) formmater2 = logging.Formatter('%(asctime)s : %(message)s', datefmt='%Y-%m-%d %H:%M:%S %p',) formmater3 = logging.Formatter('%(name)s %(message)s',) # 5、为Handler对象绑定格式 h3.setFormatter(formmater1) h4.setFormatter(formmater2) sm.setFormatter(formmater3) # 6、将Handler添加给logger并设置日志级别 logger.addHandler(h3) logger.addHandler(h4) logger.addHandler(sm) # 设置日志级别,可以在两个关卡进行设置logger与handler # logger是第一级过滤,然后才能到handler logger.setLevel(30) h3.setLevel(10) h4.setLevel(10) sm.setLevel(10) # 7、测试 logger.debug('debug') logger.info('info') logger.warning('warning') logger.error('error') logger.critical('critical')
以上三个版本的日志只是为了引出我们下面的日志配置文件
import os import logging.config # 定义三种日志输出格式 开始 standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \ '[%(levelname)s][%(message)s]' # 其中name为getLogger()指定的名字;lineno为调用日志输出函数的语句所在的代码行 simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s' id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s' # 定义日志输出格式 结束 logfile_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # log文件的目录,需要自定义文件路径 # atm logfile_dir = os.path.join(logfile_dir, 'log') # C:\Users\oldboy\Desktop\atm\log logfile_name = 'log.log' # log文件名,需要自定义路径名 # 如果不存在定义的日志目录就创建一个 if not os.path.isdir(logfile_dir): # C:\Users\oldboy\Desktop\atm\log os.mkdir(logfile_dir) # log文件的全路径 logfile_path = os.path.join(logfile_dir, logfile_name) # C:\Users\oldboy\Desktop\atm\log\log.log # 定义日志路径 结束 # log配置字典 LOGGING_DIC = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': standard_format }, 'simple': { 'format': simple_format }, }, 'filters': {}, # filter可以不定义 'handlers': { # 打印到终端的日志 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', # 打印到屏幕 'formatter': 'simple' }, # 打印到文件的日志,收集info及以上的日志 'default': { 'level': 'INFO', 'class': 'logging.handlers.RotatingFileHandler', # 保存到文件 'formatter': 'standard', 'filename': logfile_path, # 日志文件 'maxBytes': 1024 * 1024 * 5, # 日志大小 5M (*****) 'backupCount': 5, 'encoding': 'utf-8', # 日志文件的编码,再也不用担心中文log乱码了 }, }, 'loggers': { # logging.getLogger(__name__)拿到的logger配置。如果''设置为固定值logger1,则下次导入必须设置成logging.getLogger('logger1') '': { # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕 'handlers': ['default', 'console'], 'level': 'DEBUG', 'propagate': False, # 向上(更高level的logger)传递 }, }, } def load_my_logging_cfg(): logging.config.dictConfig(LOGGING_DIC) # 导入上面定义的logging配置 logger = logging.getLogger(__name__) # 生成一个log实例 logger.info('It works!') # 记录该文件的运行状态 return logger if __name__ == '__main__': load_my_logging_cfg()
import time import logging import my_logging # 导入自定义的logging配置 logger = logging.getLogger(__name__) # 生成logger实例 def demo(): logger.debug("start range... time:{}".format(time.time())) logger.info("中文测试开始。。。") for i in range(10): logger.debug("i:{}".format(i)) time.sleep(0.2) else: logger.debug("over range... time:{}".format(time.time())) logger.info("中文测试结束。。。") if __name__ == "__main__": my_logging.load_my_logging_cfg() # 在你程序文件的入口加载自定义logging配置 demo()
# logging_config.py # 学习中遇到问题没人解答?小编创建了一个Python学习交流群:711312441 LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' '[%(levelname)s][%(message)s]' }, 'simple': { 'format': '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s' }, 'collect': { 'format': '%(message)s' } }, 'filters': { 'require_debug_true': { '()': 'django.utils.log.RequireDebugTrue', }, }, 'handlers': { # 打印到终端的日志 'console': { 'level': 'DEBUG', 'filters': ['require_debug_true'], 'class': 'logging.StreamHandler', 'formatter': 'simple' }, # 打印到文件的日志,收集info及以上的日志 'default': { 'level': 'INFO', 'class': 'logging.handlers.RotatingFileHandler', # 保存到文件,自动切 'filename': os.path.join(BASE_LOG_DIR, "xxx_info.log"), # 日志文件 'maxBytes': 1024 * 1024 * 5, # 日志大小 5M 'backupCount': 3, 'formatter': 'standard', 'encoding': 'utf-8', }, # 打印到文件的日志:收集错误及以上的日志 'error': { 'level': 'ERROR', 'class': 'logging.handlers.RotatingFileHandler', # 保存到文件,自动切 'filename': os.path.join(BASE_LOG_DIR, "xxx_err.log"), # 日志文件 'maxBytes': 1024 * 1024 * 5, # 日志大小 5M 'backupCount': 5, 'formatter': 'standard', 'encoding': 'utf-8', }, # 打印到文件的日志 'collect': { 'level': 'INFO', 'class': 'logging.handlers.RotatingFileHandler', # 保存到文件,自动切 'filename': os.path.join(BASE_LOG_DIR, "xxx_collect.log"), 'maxBytes': 1024 * 1024 * 5, # 日志大小 5M 'backupCount': 5, 'formatter': 'collect', 'encoding': "utf-8" } }, 'loggers': { # logging.getLogger(__name__)拿到的logger配置 '': { 'handlers': ['default', 'console', 'error'], 'level': 'DEBUG', 'propagate': True, }, # logging.getLogger('collect')拿到的logger配置 'collect': { 'handlers': ['console', 'collect'], 'level': 'INFO', } }, } # ----------- # 用法:拿到俩个logger logger = logging.getLogger(__name__) # 线上正常的日志 collect_logger = logging.getLogger("collect") # 领导说,需要为领导们单独定制领导们看的日志
到此,关于“Python中的logging模块怎么使用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流