如何在Kubernetes上构建机器学习系统

这篇文章主要介绍“如何在Kubernetes上构建机器学习系统”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“如何在Kubernetes上构建机器学习系统”文章能帮助大家解决问题。

创新互联服务项目包括策勒网站建设、策勒网站制作、策勒网页制作以及策勒网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,策勒网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到策勒省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

什么是 Kubeflow Pipelines

Kubeflow Pipelines 平台包括:

  • 能够运行和追踪实验的管理控制台

  • 能够执行多个机器学习步骤的工作流引擎 (Argo)

  • 用来自定义工作流的 SDK,目前只支持 Python

而 Kubeflow Pipelines 的目标在于:

  • 端到端的任务编排: 支持编排和组织复杂的机器学习工作流,该工作流可以被直接触发,定时触发,也可以由事件触发,甚至可以实现由数据的变化触发;

  • 简单的实验管理: 帮助数据科学家尝试众多的想法和框架,以及管理各种试验。并实现从实验到生产的轻松过渡;

  • 通过组件化方便重用: 通过重用 Pipelines 和组件快速创建端到端解决方案,无需每次从 0 开始的重新构建。

在阿里云上运行 Kubeflow Pipelines

看到 Kubeflow Piplines 的能力,大家是不是都摩拳擦掌,想一睹为快?但是目前国内想使用 Kubeflow Pipeline 有两个挑战:

  1. Pipelines 需要通过 Kubeflow 部署;而 Kubeflow 默认组件过多,同时通过 Ksonnet 部署 Kubeflow 也是很复杂的事情;

  2. Pipelines 本身和谷歌云平台有深度耦合,无法运行在其他云平台上或者裸金属服务器的环境。

为了方便国内的用户安装 Kubeflow Pipelines,阿里云容器服务团队提供了基于 Kustomize 的 Kubeflow Pipelines 部署方案。和普通的 Kubeflow 基础服务不同,Kubeflow Pipelines 需要依赖于 MySQL 和 minio 这些有状态服务,也就需要考虑如何持久化和备份数据。在本例子中,我们借助阿里云 SSD 云盘作为数据持久化的方案,分别自动的为 mysql 和 minio 创建 SSD 云盘。
您可以在阿里云上尝试一下单独部署最新版本 Kubeflow Pipelines。

前提条件

  • 您需要安装 kustomize

在 Linux 和 Mac OS 环境,可以执行

opsys=linux  # or darwin, or windows
curl -s https://api.github.com/repos/kubernetes-sigs/kustomize/releases/latest |\
  grep browser_download |\
  grep $opsys |\
  cut -d '"' -f 4 |\
  xargs curl -O -L
mv kustomize_*_${opsys}_amd64 /usr/bin/kustomize
chmod u+x /usr/bin/kustomize

在 Windows 环境,可以下载 kustomize_2.0.3_windows_amd64.exe

  • 在阿里云容器服务创建 Kubernetes 集群, 可以参考 文档

部署过程

  1. 通过 ssh 访问 Kubernetes 集群,具体方式可以参考文档

  2. 下载源代码

yum install -y git
git clone --recursive https://github.com/aliyunContainerService/kubeflow-aliyun
  1. 安全配置

3.1 配置 TLS 证书。如果没有 TLS 证书,可以通过下列命令生成

yum install -y openssl
domain="pipelines.kubeflow.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.key -out kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.crt -subj "/CN=$domain/O=$domain"

如果您有TLS证书,请分别将私钥和证书保存到kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.keykubeflow-aliyun/overlays/ack-auto-clouddisk/tls.crt

3.2 配置 admin 的登录密码

yum install -y httpd-tools
htpasswd -c kubeflow-aliyun/overlays/ack-auto-clouddisk/auth admin
New password:
Re-type new password:
Adding password for user admin
  1. 首先利用 kustomize 生成部署 yaml

cd kubeflow-aliyun/
kustomize build overlays/ack-auto-clouddisk > /tmp/ack-auto-clouddisk.yaml
  1. 查看所在的 Kubernetes 集群节点所在的地域和可用区,并且根据其所在节点替换可用区,假设您的集群所在可用区为 cn-hangzhou-g, 可以执行下列命令

sed -i.bak 's/regionid: cn-beijing/regionid: cn-hangzhou/g' \
    /tmp/ack-auto-clouddisk.yaml
sed -i.bak 's/zoneid: cn-beijing-e/zoneid: cn-hangzhou-g/g' \
    /tmp/ack-auto-clouddisk.yaml

建议您检查一下 /tmp/ack-auto-clouddisk.yaml 修改是否已经设置

  1. 将容器镜像地址由 gcr.io 替换为 registry.aliyuncs.com

sed -i.bak 's/gcr.io/registry.aliyuncs.com/g' \
    /tmp/ack-auto-clouddisk.yaml

建议您检查一下 /tmp/ack-auto-clouddisk.yaml 修改是否已经设置

  1. 调整使用磁盘空间大小, 比如需要调整磁盘空间为 200G

sed -i.bak 's/storage: 100Gi/storage: 200Gi/g' \
    /tmp/ack-auto-clouddisk.yaml
  1. 验证 pipelines 的 yaml 文件

kubectl create --validate=true --dry-run=true -f /tmp/ack-auto-clouddisk.yaml
  1. 利用 kubectl 部署 pipelines

kubectl create -f /tmp/ack-auto-clouddisk.yaml
  1. 查看访问 pipelines 的方式,我们通过 ingress 暴露 pipelines 服务,在本例子中,访问 IP 是 112.124.193.271。而 Pipelines 管理控制台的链接是: https://112.124.193.271/pipeline/

kubectl get ing -n kubeflow
NAME             HOSTS   ADDRESS           PORTS     AGE
ml-pipeline-ui   *       112.124.193.271   80, 443   11m
  1. 访问 pipelines 管理控制台

如果使用自签发证书,会提示此链接非私人链接,请点击显示详细信息, 并点击访问此网站。如何在Kubernetes上构建机器学习系统 请输入步骤 2.2 中的用户名 admin 和设定的密码。如何在Kubernetes上构建机器学习系统 

这时就可以使用 pipelines 管理和运行训练任务了。如何在Kubernetes上构建机器学习系统

Q&A

  1. 为什么这里要使用阿里云的 SSD 云盘?

这是由于阿里云的 SSD 云盘可以设置定期的自动备份,保证 pipelines 中的元数据不会丢失。

  1. 如何进行云盘备份?

如果您想备份云盘的内容,可以为云盘 手动创建快照 或者 为硬盘设置自动快照策略 按时自动创建快照。

  1. 如何清理 Kubeflow Piplines 部署?

这里的清理工作分为两个部分:

  • 删除 Kubeflow Pipelines 的组件

kubectl delete -f /tmp/ack-auto-clouddisk.yaml
  • 通过释放云盘分别释放 mysql 和 minio 存储对应的两个云盘

关于“如何在Kubernetes上构建机器学习系统”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注创新互联行业资讯频道,小编每天都会为大家更新不同的知识点。


文章名称:如何在Kubernetes上构建机器学习系统
网站路径:http://csdahua.cn/article/jhjojh.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流