Python如何利用Pandas进行数据分析

本篇内容主要讲解“Python如何利用Pandas进行数据分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python如何利用Pandas进行数据分析”吧!

网站制作、网站建设中从网站色彩、结构布局、栏目设置、关键词群组等细微处着手,突出企业的产品/服务/品牌,帮助企业锁定精准用户,提高在线咨询和转化,使成都网站营销成为有效果、有回报的无锡营销推广。成都创新互联专业成都网站建设10多年了,客户满意度97.8%,欢迎成都创新互联客户联系。

Pandas是最流行的用于数据分析的 Python 库。它提供高度优化的性能,后端源代码完全用CPython编写。

我们可以通过以下方式分析 pandas 中的数据:

  • 1.Series

  • 2.数据帧

Series

Series是 pandas 中定义的一维(1-D)数组,可用于存储任何数据类型。

代码 #1

创建 Series

# 创建 Series 的程序

# 导入 Panda 库
import pandas as pd

# 使用数据和索引创建 Series
a = pd.Series(Data, index = Index)

在这里,数据可以是:

  • 一个标量值,可以是 integerValue、字符串

  • 可以是键值对的Python 字典

  • 一个Ndarray

注意:默认情况下,索引从 0、1、2、...(n-1) 开始,其中 n 是数据长度。

代码 #2

当 Data 包含标量值时

# 使用标量值创建 Series 的程序

# 数值数据
Data =[1, 3, 4, 5, 6, 2, 9]

# 使用默认索引值创建系列
s = pd.Series(Data)	

# 预定义的索引值
Index =['a', 'b', 'c', 'd', 'e', 'f', 'g']

# 创建具有预定义索引值的系列
si = pd.Series(Data, Index)

输出

Python如何利用Pandas进行数据分析

具有默认索引的标量数据

Python如何利用Pandas进行数据分析

带索引的标量数据

代码#3

当数据包含字典时

# 创建词典 Series 程序
dictionary ={'a':1, 'b':2, 'c':3, 'd':4, 'e':5}

# 创建字典类型 Series
sd = pd.Series(dictionary)

输出

Python如何利用Pandas进行数据分析

字典类型数据

代码 #4

当 Data 包含 Ndarray

# 创建 ndarray series 的程序

# 定义二维数组
Data =[[2, 3, 4], [5, 6, 7]]

# 创建一系列二维数组
snd = pd.Series(Data)

输出

Python如何利用Pandas进行数据分析

数据作为 Ndarray

数据框

DataFrames是 pandas 中定义的二维(2-D)数据结构,由行和列组成。

代码 #1

创建 DataFrame

# 创建 DataFrame 的程序

# 导入库
import pandas as pd

# 使用数据创建 DataFrame
a = pd.DataFrame(Data)

在这里,数据可以是:

  • 一本或多本词典

  • 一个或多个Series

  • 2D-numpy Ndarray

代码 #2

当数据是字典时

# 使用两个字典创建数据框的程序

# 定义字典 1
dict1 ={'a':1, 'b':2, 'c':3, 'd':4}

# 定义字典 2
dict2 ={'a':5, 'b':6, 'c':7, 'd':8, 'e':9}

# 用 dict1 和 dict2 定义数据
Data = {'first':dict1, 'second':dict2}

# 创建数据框
df = pd.DataFrame(Data)

输出

Python如何利用Pandas进行数据分析

带有两个字典的 DataFrame

代码 #3

当数据是Series时

# 创建三个系列的Dataframe的程序
import pandas as pd

# 定义 series 1
s1 = pd.Series([1, 3, 4, 5, 6, 2, 9])

# 定义 series 2
s2 = pd.Series([1.1, 3.5, 4.7, 5.8, 2.9, 9.3])

# 定义 series 3
s3 = pd.Series(['a', 'b', 'c', 'd', 'e'])	

# 定义 Data
Data ={'first':s1, 'second':s2, 'third':s3}

# 创建 DataFrame
dfseries = pd.DataFrame(Data)

输出

Python如何利用Pandas进行数据分析

三个 Series 的 DataFrame

代码 #4

当 Data 为 2D-numpy ndarray注意:在创建 2D 数组的 DataFrame 时必须保持一个约束 - 2D 数组的维度必须相同。

# 从二维数组创建 DataFrame 的程序

# 导入库
import pandas as pd

# 定义 2d 数组 1
d1 =[[2, 3, 4], [5, 6, 7]]

# 定义 2d 数组 2
d2 =[[2, 4, 8], [1, 3, 9]]

# 定义 Data
Data ={'first': d1, 'second': d2}

# 创建 DataFrame
df2d = pd.DataFrame(Data)

输出

Python如何利用Pandas进行数据分析

带有 2d ndarray 的 DataFrame

到此,相信大家对“Python如何利用Pandas进行数据分析”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


分享题目:Python如何利用Pandas进行数据分析
文章分享:http://csdahua.cn/article/jodjpe.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流