基于大数据的用户行为预测

随着智能手机的普及和APP形态的愈发丰富,移动设备的应用安装量急剧上升。用户在每天使用这些APP的过程中,也会产生大量的线上和线下行为数据。这些数据反映了用户的兴趣与需求,如果能够被深入挖掘并且合理利用,可以指导用户的运营。若能提前预测用户下一步的行为,甚至提前得知用户卸载、流失的可能性,则能更好地指导产品的优化以及用户的精细化运营。

10年积累的成都网站设计、成都网站建设经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站策划后付款的网站建设流程,更有济阳免费网站建设让你可以放心的选择与我们合作。


大数据服务商个推旗下的应用统计产品“个数”,可以从用户属性、使用行为、行业对比等多指标多维度对APP进行全面统计分析。除了基础统计、渠道统计、埋点统计等功能外,个数的一大特色能力是——可基于大数据进行用户行为预测,帮助运营者预测用户流失、卸载、付费的可能性,从而助力APP的精细化运营以及全生命周期管理。

开发者在实践的过程中,基于大数据进行用户行为预测会有两大难点:第一,开发者需要使用多种手段对目标问题进行分解;第二,数据在特定的问题上会有不同的表现。

“个数”利用数据分析建模,对用户行为进行预测的大概流程包括以下几点:

1、目标问题分解

(1)明确需要进行预测的问题;
(2)明确未来一段时间的跨度。

2、分析样本数据

(1)提取出所有用户的历史付费记录,这些付费记录可能仅占所有记录的千分之几,数据量会非常小;
(2)分析付费记录,了解付费用户的构成,比如年龄层次、性别、购买力和消费的产品类别等;
(3)提取非付费用户的历史数据,这里可以根据产品的需求,添加条件、或无条件地进行提取,比如提取活跃并且非付费用户,或者不加条件地直接进行提取;
(4)分析非付费用户的构成。

3、构建模型的特征

(1)原始的数据可能能够直接作为特征使用;
(2)有些数据在变换后,才会有更好的使用效果,比如年龄,可以变换成少年、中年、老年等特征;
(3)交叉特征的生成,比如“中年”和“女性”两种特征,就可以合并为一个特征进行使用。

4、计算特征的相关性

(1)计算特征饱和度,进行饱和度过滤;
(2)计算特征IV、卡方等指标,用以进行特征相关性的过滤。

5、选用相关的模型进行建模

(1)选择适当的参数进行建模;
(2)模型训练好后,统计模型的精确度、召回率、AUC等指标,来评价模型;
(3)如果觉得模型的表现可以接受,就可以在验证集上做验证,验证通过后,进行模型保存和预测。

6、预测

加载上述保存的模型,并加载预测数据,进行预测。

7、监控

最后,运营人员还需要对每次预测的结果进行关键指标监控,及时发现并解决出现的问题,防止出现意外情况,导致预测无效或预测结果出现偏差。

以上就是“个数”对用户行为进行预测的整体流程。总的来说,分析和建模的关键在于大数据的收集和对大数据细节的处理。在进行用户行为预测的整个过程中,可供技术人员选择的方法和模型都有很多,而对于实际的应用者来说,没有最好的选择,只有更合适的选择。


当前文章:基于大数据的用户行为预测
当前链接:http://csdahua.cn/article/jojesh.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流