数据结构:图的代码

直接上代码:代码里面有注释

创新互联是创新、创意、研发型一体的综合型网站建设公司,自成立以来公司不断探索创新,始终坚持为客户提供满意周到的服务,在本地打下了良好的口碑,在过去的十余年时间我们累计服务了上千家以及全国政企客户,如混凝土搅拌罐等企业单位,完善的项目管理流程,严格把控项目进度与质量监控加上过硬的技术实力获得客户的一致赞美。

#pragma once

#include 
#include 
#include "Heap.hpp"
#include "UnionFindSet.hpp"

//
// 临接矩阵表示无向图&有向图
//

template
class GraphMatrix
{
public:
	GraphMatrix(const V* vertexs, int size, bool isDirected)
		:_vertexSize(size)
		,_isDirected(isDirected)
	{
		// 开辟矩阵和边集
		_matrix = new W*[_vertexSize];
		_vertexs = new V[_vertexSize];

		for (int i = 0; i < _vertexSize; ++i)
		{
			// 初始化矩阵
			_matrix[i] = new W[_vertexSize];
			memset(_matrix[i], 0, sizeof(W)*_vertexSize);

			// 初始化边集
			_vertexs[i] = vertexs[i];
		}
	}

	int GetVertexIndex(const V& vtx)
	{
		for (int i = 0; i < _vertexSize; ++i)
		{
			if (_vertexs[i] == vtx)
			{
				return i;
			}
		}

		return -1;
	}

	void AddEdge(const V& src, const V& dst, const W& weight)
	{
		int srcIndex = GetVertexIndex(src); 
		int dstIndex = GetVertexIndex(dst);

		assert(srcIndex != -1);
		assert(dstIndex != -1);

		if (_isDirected)
		{
			_matrix[srcIndex][dstIndex] = weight;
		}
		else
		{
			_matrix[srcIndex][dstIndex] = weight;
			_matrix[dstIndex][srcIndex] = weight;
		}
	}

	void Display()
	{
		for (int i = 0; i < _vertexSize; ++i)
		{
			cout<<_vertexs[i]<<" ";
		}
		cout< g("ABCDE", 5, false);
	g.AddEdge('A', 'D', 10);
	g.AddEdge('A', 'E', 20);
	g.AddEdge('B', 'C', 10);
	g.AddEdge('B', 'D', 20);
	g.AddEdge('B', 'E', 30);
	g.AddEdge('C', 'E', 40);

	g.Display();
}

// 有向图
void Test2()
{
	GraphMatrix g("ABCDE", 5, true);
	g.AddEdge('A', 'D', 10);
	g.AddEdge('E', 'A', 20);
	g.AddEdge('B', 'C', 10);
	g.AddEdge('D', 'B', 20);
	g.AddEdge('E', 'B', 30);
	g.AddEdge('C', 'E', 40);

	g.Display();
}

//
// 临接表
//

template
struct LinkEdge
{
	int _srcIndex;			// 源顶点下标
	int _dstIndex;			// 目标顶点下标
	W _weight;				// 权重
	LinkEdge* _next;	// 指向下一个节点的指针 

	LinkEdge(int srcIndex = -1, int dstIndex = -1, const W& weight = W())
		:_srcIndex(srcIndex)
		,_dstIndex(dstIndex)
		,_weight(weight)
		,_next(NULL)
	{}
};

template
struct CompareLinkEdge
{
	bool operator()(LinkEdge* lhs, LinkEdge* rhs)
	{
		return lhs->_weight < rhs->_weight;
	}
};

template
class GraphLink
{
protected:
	vector _vertexs;						// 顶点集合
	vector*> _linkTables;		// 临接表
	bool _isDirected;						// 是否是有向图
public:
	GraphLink(bool isDirected = false)
		:_isDirected(isDirected)
	{}

	GraphLink(const V* ar, int size, bool isDirected = false)
		:_isDirected(isDirected)
	{
		_vertexs.resize(size);
		_linkTables.resize(size);
		for (size_t i = 0; i < size; ++i)
		{
			_vertexs[i] = ar[i];
		}
	}

public:
	int GetVertexIndex(const V& vertex)
	{
		for (int i = 0; i < _vertexs.size(); ++i)
		{
			if(_vertexs[i] == vertex)
				return i;
		}

		return -1;
	}

	void _AddEdge(int srcIndex, int dstIndex, const W& weight)
	{
		LinkEdge* tmp = new LinkEdge(srcIndex, dstIndex, weight);

		tmp->_next = _linkTables[srcIndex];
		_linkTables[srcIndex] = tmp;
	}

	void AddEdge(const V& src, const V& dst, const W& weight)
	{
		int srcIndex = GetVertexIndex(src);
		int dstIndex = GetVertexIndex(dst);

		assert(srcIndex != -1);
		assert(dstIndex != -1);

		// 无向图
		if(_isDirected)
		{
			_AddEdge(srcIndex, dstIndex, weight);
		}
		else
		{
			_AddEdge(srcIndex, dstIndex, weight);
			_AddEdge(dstIndex, srcIndex, weight);
		}
	}

	void Display()
	{
		for (int i = 0; i < _vertexs.size(); ++i)
		{
			cout<<_vertexs[i]<<"["<";
			LinkEdge* begin = _linkTables[0];
			while (begin)
			{
				cout<_weight<<"["<_dstIndex<<"]""->";
				begin = begin->_next;
			}

			cout<<"NULL"<* _GetNextEdge(int src, int cur)
	{
		LinkEdge* edge = _linkTables[src];
		while (edge)
		{
			if (edge->_dstIndex == cur)
			{
				return edge->_next;
			}
			edge = edge->_next;
		}

		return NULL;
	}

	void DFS()
	{
		cout<<"DFS:";

		bool* visited = new bool[_vertexs.size()];
		memset(visited, false, sizeof(bool)*_vertexs.size());

		for (size_t i = 0; i < _vertexs.size(); ++i)
		{
			if (visited[i] == false)
			{
				// 1.访问当前节点
				cout<<_vertexs[i]<<" ";
				visited[i] = true;

				_DFS(i, visited);
			}
		}

		delete[] visited;

		cout<* edge = _linkTables[src];

		// 3.依次获取临接表后面的顶点进行深度优先遍历
		while (edge)
		{
			if (visited[edge->_dstIndex] == false)
			{
				cout<<_vertexs[edge->_dstIndex]<<" ";
				visited[edge->_dstIndex] = true;

				_DFS(edge->_dstIndex, visited);
			}

			edge = edge->_next;
		}
	}

	void BFS()
	{
		cout<<"BFS:";
		bool* visited = new bool[_vertexs.size()];
		memset(visited, false, sizeof(bool)*_vertexs.size());

		for (size_t i = 0; i < _vertexs.size(); ++i)
		{
			if (visited[i] == false)
			{
				_BFS(i, visited);
			}
		}

		delete[] visited;

		cout< q;
		q.push(cur);
		while (!q.empty())
		{
			cur = q.front();
			q.pop();

			LinkEdge* edge = _linkTables[cur];
			while (edge)
			{
				if (visited[edge->_dstIndex] == false)
				{
					cout<<_vertexs[edge->_dstIndex]<<" ";

					visited[edge->_dstIndex] = true;
					q.push(edge->_dstIndex);
				}

				edge = edge->_next;
			}
		}
	}

	bool Kruskal(GraphLink& minSpanTree)
	{
		// 1.初始化最小生成树
		minSpanTree._vertexs = _vertexs;
		minSpanTree._linkTables.resize(_vertexs.size());
		minSpanTree._isDirected = _isDirected;

		//
		// 2.将所有的边放到一个最小堆
		// 假设有V个顶点,E条边
		// 
		Heap*, CompareLinkEdge> minHeap;
		for (int i = 0; i < _vertexs.size(); ++i)
		{
			LinkEdge* begin = _linkTables[i];
			while (begin)
			{
				// 无向图的边需要进行过滤
				if (begin->_srcIndex < begin->_dstIndex)
				{
					minHeap.Push(begin);
				}

				begin = begin->_next;
			}
		}
		
		// 3.使用并差集和最小堆构建最小生成树
		UnionFindSet UFSet(_vertexs.size());
		int count = _vertexs.size();
		while (--count)
		{
			if (minHeap.Empty())
			{
				return false;
			}

			LinkEdge* edge = minHeap.Top();
			minHeap.Pop();
			int src = UFSet.FindRoot(edge->_srcIndex);
			int dst = UFSet.FindRoot(edge->_dstIndex);

			if(src != dst)
			{
				UFSet.Union(src, dst);
				minSpanTree._AddEdge(edge->_srcIndex, edge->_dstIndex, edge->_weight);
			}
		}

		return true;
	}

	bool Prim(GraphLink& minSpanTree)
	{
		// 1.初始化最小生成树
		minSpanTree._vertexs = _vertexs;
		minSpanTree._linkTables.resize(_vertexs.size());
		minSpanTree._isDirected = _isDirected;

		bool* visitedSet = new bool[_vertexs.size()];
		memset(visitedSet, false, sizeof(bool)*_vertexs.size());

		int src = 0;
		visitedSet[src] = true;
		Heap*, CompareLinkEdge> minHeap;

		int count = 1;
		do 
		{
			// 2.取出一个顶点所有未访问过的临接边放到一个最小堆里面
			LinkEdge* edge = _linkTables[src];
			while(edge)
			{
				if (visitedSet[edge->_dstIndex] == false)
				{
					minHeap.Push(edge);
				}

				edge = _GetNextEdge(src, edge->_dstIndex);
			}

			// 2.选出堆中最小的边加入生成树
			while(!minHeap.Empty() && count < _vertexs.size())
			{
				edge = minHeap.Top();
				minHeap.Pop();
				if (visitedSet[edge->_dstIndex] == false)
				{
					minSpanTree._AddEdge(edge->_srcIndex, edge->_dstIndex,edge->_weight);
					visitedSet[edge->_dstIndex] = true;
					src = edge->_dstIndex;
					++count;

					break;
				}  
			}
		}while (count < _vertexs.size());

		return true;
	}

	W _GetWeight(int src, int dst, const W& maxValue)
	{
		if (src == dst)
			return maxValue;

		LinkEdge* edge = _linkTables[src];
		while (edge)
		{
			if (edge->_dstIndex == dst)
			{
				return edge->_weight;
			}

			edge = edge->_next;
		}

		return maxValue;
	}

	// 非负单源最短路径--Dijkstra(迪科斯彻)
	// 求src到其他顶点的最短路径
	void _Dijkstra(int src, W* dist, int* path, bool* vSet, int size, const W& maxValue)
	{
		//
		// 1.dist初始化src到其他顶点的的距离
		// 2.path初始化src到其他顶点的路径
		// 3.初始化顶点集合
		//
		for (int i = 0; i < size; ++i)
		{
			dist[i] = _GetWeight(src, i, maxValue);
			path[i] = src;
			vSet[i] = false;
		}

		// 将src加入集合
		vSet[src] = true;

		int count = size;
		while(count--)
		{
			//
			// 选出与src顶点连接的边中最小的边
			// src->min
			W min = maxValue;
			int minIndex = src;
			for (int j = 0; j < size; ++j)
			{
				if (vSet[j] == false && dist[j] < min)
				{
					minIndex = j;
					min = dist[j];
				}
			}

			vSet[minIndex] = true;
			for (int k = 0; k < size; ++k)
			{
				if(k == src)
					continue;

				//  
				// 更新src->k的距离
				// 如果dist(src,min)+dist(min, k)的权值小于dist(src, k)
				// 则更新dist(src,k)和path(src->min->k)
				//
				W w = _GetWeight(minIndex, k, maxValue);
				if (vSet[k] == false && dist[minIndex] + w < dist[k])
				{
					dist[k] = dist[minIndex] + w;
					path[k] = minIndex;
				}
			}
		}
	}

	void _Dijkstra_OP(int src, W* dist, int* path,
		bool* vSet, int size, const W& maxValue)
	{
		//
		// 1.dist初始化src到其他顶点的的距离
		// 2.path初始化src到其他顶点的路径
		// 3.初始化顶点集合
		//
		for (int i = 0; i < size; ++i)
		{
			dist[i] = _GetWeight(src, i, maxValue);
			path[i] = src;
			vSet[i] = false;
		}

		struct Compare
		{
			bool operator()(const pair& lhs, const pair& rhs)
			{
				return lhs.first < rhs.first;
			}
		};

		Heap, Compare> minHeap;
		for (int i = 0; i < size; ++i)
		{
			if (dist[i] < maxValue)
			{
				minHeap.Push(make_pair(dist[i], i));
			}
		}

		// 将src加入集合
		vSet[src] = true;

		int count = size;
		while(count--)
		{
			//
			// 选出与src顶点连接的边中最小的边
			// src->min

			if (minHeap.Empty())
				continue;

			int minIndex = minHeap.Top().second;
			minHeap.Pop();

			vSet[minIndex] = true;
			for (int k = 0; k < size; ++k)
			{
				// 
				// 如果dist(src->min)+dist(min, k)的权值小于dist(src, k)
				// 则更新dist(src,k)和path(src->min->k)
				//
				W w = _GetWeight(minIndex, k, maxValue);
				if (vSet[k] == false && dist[minIndex] + w < dist[k])
				{
					dist[k] = dist[minIndex] + w;
					path[k] = minIndex;

					minHeap.Push(make_pair(dist[k], k));
				}
			}
		}
	}

	void PrintPath(int src, W* dist, int* path, int size)
	{
		int* vPath = new int[size];
		for (int i = 0; i < size; ++i)
		{
			if (i != src)
			{
				int index = i, count = 0;
				do{
					vPath[count++] = index;
					index = path[index];
				}while (index != src);

				vPath[count++] = src;

				//cout<<"顶点:"<<_linkTable[src]._vertex\
				<<"->顶点:"<<_linkTable[i]._vertex<<"的路径为:";
				cout<";
					cout<";
				}

				cout<<"路径长度为:"< g("ABCDE", 5, false);
	g.AddEdge('A', 'D', 10);
	g.AddEdge('A', 'E', 20);
	g.AddEdge('B', 'C', 10);
	g.AddEdge('B', 'D', 20);
	g.AddEdge('B', 'E', 30);
	g.AddEdge('C', 'E', 40);
	g.Display();

	// 生成最小生成树
	GraphLink minSpanTree1(false);
	g.Kruskal(minSpanTree1);

	minSpanTree1.Display();

	// 生成最小生成树
	GraphLink minSpanTree2(false);
	g.Prim(minSpanTree2);
	minSpanTree2.Display();

	g.DFS();
	g.BFS();
}

// 有向图
void Test4()
{
	GraphLink g("ABCDE", 5, true);
	g.AddEdge('A', 'D', 10);
	g.AddEdge('E', 'A', 20);
	g.AddEdge('B', 'C', 10);
	g.AddEdge('D', 'B', 20);
	g.AddEdge('E', 'B', 30);
	g.AddEdge('C', 'E', 40);

	g.AddEdge('A', 'C', 50);
	g.AddEdge('A', 'E', 50);

	g.Display();

	g.Dijkstra(0, 10000);
	//g.Dijkstra(1, 10000);
}

以上


分享文章:数据结构:图的代码
URL分享:http://csdahua.cn/article/jpcgid.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流