扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!
创新互联建站-专业网站定制、快速模板网站建设、高性价比西湖网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式西湖网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖西湖地区。费用合理售后完善,十年实体公司更值得信赖。这篇文章主要讲解了python实现卡方值分箱算法的代码详解,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
原理很简单,初始分20箱或更多,先确保每箱中都含有0,1标签,对不包含0,1标签的箱向前合并,计算各箱卡方值,对卡方值最小的箱向后合并,代码如下
import pandas as pd import numpy as np import scipy from scipy import stats def chi_bin(DF,var,target,binnum=5,maxcut=20): ''' DF:data var:variable target:target / label binnum: the number of bins output maxcut: initial bins number ''' data=DF[[var,target]] #equifrequent cut the var into maxcut bins data["cut"],breaks=pd.qcut(data[var],q=maxcut,duplicates="drop",retbins=True) #count 1,0 in each bin count_1=data.loc[data[target]==1].groupby("cut")[target].count() count_0=data.loc[data[target]==0].groupby("cut")[target].count() #get bins value: min,max,count 0,count 1 bins_value=[*zip(breaks[:maxcut-1],breaks[1:],count_0,count_1)] #define woe def woe_value(bins_value): df_woe=pd.DataFrame(bins_value) df_woe.columns=["min","max","count_0","count_1"] df_woe["total"]=df_woe.count_1+df_woe.count_0 df_woe["bad_rate"]=df_woe.count_1/df_woe.total df_woe["woe"]=np.log((df_woe.count_0/df_woe.count_0.sum())/(df_woe.count_1/df_woe.count_1.sum())) return df_woe #define iv def iv_value(df_woe): rate=(df_woe.count_0/df_woe.count_0.sum())-(df_woe.count_1/df_woe.count_1.sum()) iv=np.sum(rate * df_woe.woe) return iv #make sure every bin contain 1 and 0 ##first bin merge backwards for i in range(len(bins_value)): if 0 in bins_value[0][2:]: bins_value[0:2]=[( bins_value[0][0], bins_value[1][1], bins_value[0][2]+bins_value[1][2], bins_value[0][3]+bins_value[1][3])] continue ##bins merge forwards if 0 in bins_value[i][2:]: bins_value[i-1:i+1]=[( bins_value[i-1][0], bins_value[i][1], bins_value[i-1][2]+bins_value[i][2], bins_value[i-1][3]+bins_value[i][3])] break else: break #calculate chi-square merge the minimum chisquare while len(bins_value)>binnum: chi_squares=[] for i in range(len(bins_value)-1): a=bins_value[i][2:] b=bins_value[i+1][2:] chi_square=scipy.stats.chi2_contingency([a,b])[0] chi_squares.append(chi_square) #merge the minimum chisquare backwards i = chi_squares.index(min(chi_squares)) bins_value[i:i+2]=[( bins_value[i][0], bins_value[i+1][1], bins_value[i][2]+bins_value[i+1][2], bins_value[i][3]+bins_value[i+1][3])] df_woe=woe_value(bins_value) #print bin number and iv print("箱数:{},iv:{:.6f}".format(len(bins_value),iv_value(df_woe))) #return bins and woe information return woe_value(bins_value)
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
Copyright © 2002-2023 www.csdahua.cn 快上网建站品牌 QQ:244261566 版权所有 备案号:蜀ICP备19037934号
微信二维码
移动版官网