扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
Saver的用法
成都创新互联-专业网站定制、快速模板网站建设、高性价比常宁网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式常宁网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖常宁地区。费用合理售后完善,十年实体公司更值得信赖。1. Saver的背景介绍
我们经常在训练完一个模型之后希望保存训练的结果,这些结果指的是模型的参数,以便下次迭代的训练或者用作测试。Tensorflow针对这一需求提供了Saver类。
Saver类提供了向checkpoints文件保存和从checkpoints文件中恢复变量的相关方法。Checkpoints文件是一个二进制文件,它把变量名映射到对应的tensor值 。
只要提供一个计数器,当计数器触发时,Saver类可以自动的生成checkpoint文件。这让我们可以在训练过程中保存多个中间结果。例如,我们可以保存每一步训练的结果。
为了避免填满整个磁盘,Saver可以自动的管理Checkpoints文件。例如,我们可以指定保存最近的N个Checkpoints文件。
2. Saver的实例
下面以一个例子来讲述如何使用Saver类
import tensorflow as tf import numpy as np x = tf.placeholder(tf.float32, shape=[None, 1]) y = 4 * x + 4 w = tf.Variable(tf.random_normal([1], -1, 1)) b = tf.Variable(tf.zeros([1])) y_predict = w * x + b loss = tf.reduce_mean(tf.square(y - y_predict)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) isTrain = False train_steps = 100 checkpoint_steps = 50 checkpoint_dir = '' saver = tf.train.Saver() # defaults to saving all variables - in this case w and b x_data = np.reshape(np.random.rand(10).astype(np.float32), (10, 1)) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) if isTrain: for i in xrange(train_steps): sess.run(train, feed_dict={x: x_data}) if (i + 1) % checkpoint_steps == 0: saver.save(sess, checkpoint_dir + 'model.ckpt', global_step=i+1) else: ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) else: pass print(sess.run(w)) print(sess.run(b))
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流